Publications by authors named "Erik S Roese"

The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

View Article and Find Full Text PDF

An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.

View Article and Find Full Text PDF

A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (upsilon(mir)) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(upsilon(mir), tua)] of the scanned TL.

View Article and Find Full Text PDF