Publications by authors named "Erik Robinson"

Suppressing perioperative inflammation and post-operative atrial fibrillation requires effective drug delivery platforms (DDP). Localized anti-inflammatory and anti-arrhythmic agent release may be more effective than intravenous treatment to improve patient outcomes. This study utilized a dexamethasone (DEX) and amiodarone (AMIO)-loaded Parylene-C (PPX) nano-structured film to inhibit inflammation and atrial fibrillation.

View Article and Find Full Text PDF

Unlabelled: Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration.

View Article and Find Full Text PDF

Unlabelled: This study examined a novel drug delivery system for treatment of malignant brain gliomas: DOX complexed with nanodiamonds (ND-Dox), and administered via convection-enhanced delivery (CED). Drug retention and toxicity were examined in glioma cell lines, and distribution, retention and toxicity were examined in normal rat parenchyma. Efficacy was assessed in a bioluminescence rodent tumor model.

View Article and Find Full Text PDF

Recent reports have revealed that detonation nanodiamonds (NDs) can serve as efficient, biocompatible, and versatile drug delivery platforms. Consequently, further investigations exploring additional therapeutic applications are warranted. Current limitations associated with the non-specific nature of intravenous drugs limit the potential of certain pharmacological agents.

View Article and Find Full Text PDF

Enhancing chemotherapeutic efficiency through improved drug delivery would facilitate treatment of chemoresistant cancers, such as recurrent mammary tumors and liver cancer. One way to improve drug delivery is through the use of nanodiamond (ND) therapies, which are both scalable and biocompatible. Here, we examined the efficacy of an ND-conjugated chemotherapeutic in mouse models of liver and mammary cancer.

View Article and Find Full Text PDF

The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery.

View Article and Find Full Text PDF

Enhanced specificity in drug delivery aims to improve upon systemic elution methods by locally concentrating therapeutic agents and reducing negative side effects. Due to their robust physical properties, biocompatibility and drug loading capabilities, nanodiamonds serve as drug delivery platforms that can be applied towards the elution of a broad range of therapeutically-active compounds. In this work, bovine insulin was non-covalently bound to detonated nanodiamonds via physical adsorption in an aqueous solution and demonstrated pH-dependent desorption in alkaline environments of sodium hydroxide.

View Article and Find Full Text PDF

Parylene is a biologically inert material capable of being deposited in conformal nanoscale layers on virtually any surface, making it a viable structural material for the fabrication of drug delivery devices, as well as implant coatings, sensors, and other biomedical technologies. Here we explore its novel drug delivery applications by using parylene to package the polymethyloxazoline-polydimethylsiloxane-polymethyloxazoline (PMOXA-PDMS-PMOXA) block copolymer membrane of a nanoscale thickness (approximately 4 nm/layer) mixed with a therapeutic element, creating an active parylene-encapsulated copolymeric (APC) membrane for slow release drug delivery of dexamethasone (Dex), a potent anti-inflammatory and immunosuppressant synthetic glucocorticoid. Given current needs for localized therapeutic release for conditions such as cancer, post-surgical inflammation, wound healing, regenerative medicine, to name a few, this stand-alone and minimally invasive implantable technology may impact a broad range of medical scenarios.

View Article and Find Full Text PDF

Developing biocompatible polymeric platforms for drug delivery with enhanced localized activity represents a key facet of advanced interventional therapy. In this work, the drug-eluting potential of an amine-functionalized poly- p-xylene commonly known as Parylene A (4-amino(2,2)paracyclophane) was conducted with the microfilm device consisting of a primary base layer, drug film, and a secondary eluting layer presenting exposed amine groups which enhance the range of modifications that can be incorporated into the film. The murine macrophage cell line RAW 264.

View Article and Find Full Text PDF

Amphiphilic block copolymers are finding increased potential in biological and medical research due to their innate alternating hydrophilic and hydrophilic blocks/segments which can be used to package therapeutics, or coat a broad array of biological interfaces. Some studies are already directed towards utilizing these copolymers' ability to form micelles or vesicles to develop novel methods of drug delivery to prevent inflammation or pro-cancer activity. Our study, however, aims to investigate the more fundamental cell-block copolymer interaction for use in protective nanofilms to prevent bio-fouling of non-tissue based implantable devices.

View Article and Find Full Text PDF