Publications by authors named "Erik Postma"

Unlabelled: Nanoparticle addition can expand bioplastic use, as the resultant nanocomposite features e.g., improved mechanical properties.

View Article and Find Full Text PDF

Evolutionary adaptation through genetic change requires genetic variation and is a key mechanism enabling species to persist in changing environments. Although a substantial body of work has focused on understanding how and why additive genetic variance ( ) differs among traits species, we still know little about how they vary species. Here we make a first attempt at testing for interspecific variation in two complementary measures of and the role of phylogeny in shaping this variation.

View Article and Find Full Text PDF

Maternal effects are an important source of phenotypic variation with potentially large fitness consequences, but how their importance varies with the quality of the environment across an individual's ontogeny is poorly understood. We bred Japanese quail (Coturnix japonica) of known pedigree and experimentally manipulated the quality of the offspring diet, to estimate the importance of prenatal maternal effects in shaping variation in body mass from hatching to adulthood. Maternal genetic effects on body mass at hatching were strong, and largely caused by variation in egg mass, but their importance rapidly declined with age.

View Article and Find Full Text PDF

An individual's lifetime reproductive success (LRS) measures its realized genetic contributions to the next generation, but how well does it predict this over longer periods? Here we use human genealogical data to estimate expected individual genetic contributions (IGC) and quantify the degree to which LRS, relative to other fitness proxies, predicts IGC over longer periods. This allows an identification of the life-history stages that are most important in shaping variation in IGC. We use historical genealogical data from two non-isolated local populations in Switzerland to estimate the stabilized IGC for 2230 individuals approximately 10 generations after they were born.

View Article and Find Full Text PDF

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates.

View Article and Find Full Text PDF

Historically, mothers producing twins gave birth, on average, more often than non-twinners. This observation has been interpreted as twinners having higher intrinsic fertility - a tendency to conceive easily irrespective of age and other factors - which has shaped both hypotheses about why twinning persists and varies across populations, and the design of medical studies on female fertility. Here we show in >20k pre-industrial European mothers that this interpretation results from an ecological fallacy: twinners had more births not due to higher intrinsic fertility, but because mothers that gave birth more accumulated more opportunities to produce twins.

View Article and Find Full Text PDF

(Aldabra giant tortoise) is one of only two giant tortoise species left in the world and survives as a single wild population of over 100,000 individuals on Aldabra Atoll, Seychelles. Despite this large current population size, the species faces an uncertain future because of its extremely restricted distribution range and high vulnerability to the projected consequences of climate change. Captive-bred .

View Article and Find Full Text PDF

Premise: Maternal effects have been demonstrated to affect offspring performance in many organisms, and in plants, seeds are important mediators of these effects. Some woody plant species maintain long-lasting canopy seed banks as an adaptation to wildfires. Importantly, these seeds stored in serotinous cones are produced by the mother plant under varying ontogenetic and physiological conditions.

View Article and Find Full Text PDF

Inspection of the data that accompany Pruitt and Krauel's study of individual variation in satiation threshold and a comparison of these data with the Materials and Methods and Results sections of the paper have revealed a number of issues that cast doubts on the reliability of the data and any results based on these data. In particular, we show that, following our analyses, the data are unlikely to have been obtained using the study design outlined in the publication and that statistical analyses of these data provide results that differ in important ways from those reported. These findings illustrate the importance of making raw data and analysis code available for the rigour and reproducibility of the scientific literature.

View Article and Find Full Text PDF

Begging for food, a conspicuous solicitation display, is common in a variety of taxa, and it has received extensive research attention in a parent-offspring context. Both theoretical models and empirical evidence suggest that offspring begging can be an honest signal of hunger or a mediator of competition between siblings. At a behavioural mechanistic level, begging for food can be a form of harassment aimed at persuading those in possession of food to share.

View Article and Find Full Text PDF

Within-population variation in the traits underpinning reproductive output has long been of central interest to biologists. Since they are strongly linked to lifetime reproductive success, these traits are expected to be subject to strong selection and, if heritable, to evolve. Despite the formation of durable pair bonds in many animal taxa, reproductive traits are often regarded as female-specific, and estimates of quantitative genetic variation seldom consider a potential role for heritable male effects.

View Article and Find Full Text PDF

Resting metabolic rate (RMR) is a potentially important axis of physiological adaptation to the thermal environment. However, our understanding of the causes and consequences of individual variation in RMR in the wild is hampered by a lack of data, as well as analytical challenges. RMR measurements in the wild are generally characterized by large measurement errors and a strong dependency on mass.

View Article and Find Full Text PDF

Maternal effects are prevalent in nature and significantly contribute to variation in phenotypic trait expression. However, little attention has been paid to the factors shaping variation in the traits mediating these effects (maternal effectors). Specific maternal effectors are often not identified, and typically they are assumed to be inherited in an additive genetic and autosomal manner.

View Article and Find Full Text PDF

Sexual reproduction is inherently interactive, especially in animal species such as humans that exhibit extended pair bonding. Yet we have little knowledge of the role of male characteristics and their evolutionary impact on reproductive behavioural phenotypes, to the extent that biologists typically consider component traits (e.g.

View Article and Find Full Text PDF

How special are humans? This question drives scholarly output across both the sciences and the humanities. Whereas some disciplines, and the humanities in particular, aim at gaining a better understanding of humans , most biologists ultimately aim to understand life in general. This raises the question of whether and when humans are acceptable, or even desirable, models of biological fundamentals.

View Article and Find Full Text PDF

Studies on the evolution of cooperative behaviour are typically confined to understanding its adaptive value. It is equally essential, however, to understand its potential to evolve, requiring knowledge about the phenotypic consistency and genetic basis of cooperative behaviour. While previous observational studies reported considerably high heritabilities of helping behaviour in cooperatively breeding vertebrates, experimental studies disentangling the relevant genetic and non-genetic components of cooperative behaviour are lacking.

View Article and Find Full Text PDF

Although the pedigree-based inbreeding coefficient predicts the proportion of an individual's genome that is identical-by-descent (IBD), heterozygosity at genetic markers captures Mendelian sampling variation and thereby provides an estimate of IBD. Realized IBD should hence explain more variation in fitness than their pedigree-based expectations, but how many markers are required to achieve this in practice remains poorly understood. We use extensive pedigree and life-history data from an island population of song sparrows () to show that the number of genetic markers and pedigree depth affected the explanatory power of heterozygosity and , respectively, but that heterozygosity measured at 160 microsatellites did not explain more variation in fitness than This is in contrast with other studies that found heterozygosity based on far fewer markers to explain more variation in fitness than Thus, the relative performance of marker- and pedigree-based estimates of IBD depends on the quality of the pedigree, the number, variability and location of the markers employed, and the species-specific recombination landscape, and expectations based on detailed and deep pedigrees remain valuable until we can routinely afford genotyping hundreds of phenotyped wild individuals of genetic non-model species for thousands of genetic markers.

View Article and Find Full Text PDF

In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change.

View Article and Find Full Text PDF

Heterogeneity in fitness components consists of fixed heterogeneity due to latent differences fixed throughout life (e.g., genetic variation) and dynamic heterogeneity generated by stochastic variation.

View Article and Find Full Text PDF

Telomeres are protective DNA-protein complexes located at the ends of eukaryotic chromosomes, whose length has been shown to predict life-history parameters in various species. Although this suggests that telomere length is subject to natural selection, its evolutionary dynamics crucially depends on its heritability. Using pedigree data for a population of white-throated dippers (Cinclus cinclus), we test whether and how variation in early-life relative telomere length (RTL, measured as the number of telomeric repeats relative to a control gene using qPCR) is transmitted across generations.

View Article and Find Full Text PDF

Although linkage maps are important tools in evolutionary biology, their availability for wild populations is limited. The population of song sparrows (Melospiza melodia) on Mandarte Island, Canada, is among the more intensively studied wild animal populations. Its long-term pedigree data, together with extensive genetic sampling, have allowed the study of a range of questions in evolutionary biology and ecology.

View Article and Find Full Text PDF