Background: Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of growing genomic variants can therefore serve as a predictor of future waves, enabling timely implementation of countermeasures such as non-pharmaceutical interventions (social distancing), additional vaccination (booster campaigns), or healthcare capacity adjustments. The large amount of SARS-CoV-2 genomic sequence data produced during the pandemic has provided a unique opportunity to explore the utility of these data for generating early warning signals (EWS).
View Article and Find Full Text PDFBackground: HIV molecular epidemiology (ME) is the analysis of sequence data together with individual-level clinical, demographic, and behavioral data to understand HIV epidemiology. The use of ME has raised concerns regarding identification of the putative source in direct transmission events. This could result in harm ranging from stigma to criminal prosecution in some jurisdictions.
View Article and Find Full Text PDFInference of effective population size from genomic data can provide unique information about demographic history and, when applied to pathogen genetic data, can also provide insights into epidemiological dynamics. The combination of nonparametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for nonparametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on nonparametric latent process models of population size dynamics.
View Article and Find Full Text PDFGlobal sequencing and surveillance capacity for SARS-CoV-2 must be strengthened and combined with multidisciplinary studies of infectivity, virulence, and immune escape, in order to track the unpredictable evolution of the ongoing COVID-19 pandemic.
View Article and Find Full Text PDFBackground: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.
View Article and Find Full Text PDFInference of effective population size from genomic data can provide unique information about demographic history, and when applied to pathogen genetic data can also provide insights into epidemiological dynamics. The combination of non-parametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for non-parametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on non-parametric latent process models of population size dynamics.
View Article and Find Full Text PDFBackground: The human norovirus GII.2 outbreak during the 2016-2017 winter season was of unprecedented scale and geographic distribution.
Methods: We analyzed 519 complete gene sequences of the human norovirus GII.
The United Kingdom's COVID-19 epidemic during early 2020 was one of world's largest and was unusually well represented by virus genomic sampling. We determined the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes, including 26,181 from the UK sampled throughout the country's first wave of infection. Using large-scale phylogenetic analyses combined with epidemiological and travel data, we quantified the size, spatiotemporal origins, and persistence of genetically distinct UK transmission lineages.
View Article and Find Full Text PDFEffective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020.
View Article and Find Full Text PDFPhylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological interpretations from pathogen genomic data. Building such trees requires considering a molecular clock model which represents the rate at which substitutions accumulate on genomes. When the molecular clock rate is constant throughout the tree then the clock is said to be strict, but this is often not an acceptable assumption.
View Article and Find Full Text PDFEffective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020.
View Article and Find Full Text PDFPopulation structure influences genealogical patterns, however, data pertaining to how populations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities.
View Article and Find Full Text PDFSurveillance of HIV epidemics in key populations and in developing countries is often challenging due to sparse, incomplete, or low-quality data. Analysis of HIV sequence data can provide an alternative source of information about epidemic history, population structure, and transmission patterns. To understand HIV-1 dynamics and transmission patterns in Senegal, we carried out model-based phylodynamic analyses using the structured-coalescent approach using HIV-1 sequence data from three different subgroups: reproductive aged males and females from the adult Senegalese population and men who have sex with other men (MSM).
View Article and Find Full Text PDFNear 60% of new HIV infections in the United Kingdom are estimated to occur in men who have sex with men (MSM). Age-disassortative partnerships in MSM have been suggested to spread the HIV epidemics in many Western developed countries and to contribute to ethnic disparities in infection rates. Understanding these mixing patterns in transmission can help to determine which groups are at a greater risk and guide public health interventions.
View Article and Find Full Text PDFPopulation genetic modeling can enhance Bayesian phylogenetic inference by providing a realistic prior on the distribution of branch lengths and times of common ancestry. The parameters of a population genetic model may also have intrinsic importance, and simultaneous estimation of a phylogeny and model parameters has enabled phylodynamic inference of population growth rates, reproduction numbers, and effective population size through time. Phylodynamic inference based on pathogen genetic sequence data has emerged as useful supplement to epidemic surveillance, however commonly-used mechanistic models that are typically fitted to non-genetic surveillance data are rarely fitted to pathogen genetic data due to a dearth of software tools, and the theory required to conduct such inference has been developed only recently.
View Article and Find Full Text PDFBackground: The impact of HIV pre-exposure prophylaxis (PrEP) depends on infections averted by protecting vulnerable individuals as well as infections averted by preventing transmission by those who would have been infected if not receiving PrEP. Analysis of HIV phylogenies reveals risk factors for transmission, which we examine as potential criteria for allocating PrEP.
Methods: We analyzed 6912 HIV-1 partial pol sequences from men who have sex with men (MSM) in the United Kingdom combined with global reference sequences and patient-level metadata.
Nonparametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that nonparametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history.
View Article and Find Full Text PDFPhylogenetic clustering of HIV sequences from a random sample of patients can reveal epidemiological transmission patterns, but interpretation is hampered by limited theoretical support and statistical properties of clustering analysis remain poorly understood. Alternatively, source attribution methods allow fitting of HIV transmission models and thereby quantify aspects of disease transmission. A simulation study was conducted to assess error rates of clustering methods for detecting transmission risk factors.
View Article and Find Full Text PDFIn HIV epidemics of Sub Saharan Africa, the utility of HIV prevention efforts focused on key populations at higher risk of HIV infection and transmission is unclear. We conducted a phylodynamic analysis of HIV-1 sequences from four different risk groups in Abuja, Nigeria to estimate transmission patterns between men who have sex with men (MSM) and a representative sample of newly enrolled treatment naive HIV clients without clearly recorded HIV acquisition risks. We develop a realistic dynamical infectious disease model which was fitted to time-scaled phylogenies for subtypes G and CRF02_AG using a structured-coalescent approach.
View Article and Find Full Text PDFWithin-host genetic diversity and large transmission bottlenecks confound phylodynamic inference of epidemiological dynamics. Conventional phylodynamic approaches assume that nodes in a time-scaled pathogen phylogeny correspond closely to the time of transmission between hosts that are ancestral to the sample. However, when hosts harbor diverse pathogen populations, node times can substantially pre-date infection times.
View Article and Find Full Text PDFJ R Soc Interface
December 2014
Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population.
View Article and Find Full Text PDFCoalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based inference methods being applied to populations with rapidly changing population dynamics, including pathogens like RNA viruses.
View Article and Find Full Text PDF