Publications by authors named "Erik M Roeling"

Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard).

View Article and Find Full Text PDF

The possibility to extract work from periodic, undirected forces has intrigued scientists for over a century—in particular, the rectification of undirected motion of particles by ratchet potentials, which are periodic but asymmetric functions. Introduced by Smoluchowski and Feynman to study the (dis)ability to generate motion from an equilibrium situation, ratchets operate out of equilibrium, where the second law of thermodynamics no longer applies. Although ratchet systems have been both identified in nature and used in the laboratory for the directed motion of microscopic objects, electronic ratchets have been of limited use, as they typically operate at cryogenic temperatures and generate subnanoampere currents and submillivolt voltages.

View Article and Find Full Text PDF