The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the picosecond level.
View Article and Find Full Text PDFInterleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual alpha-chains of IL2 and IL15 receptors, we investigated the spatial organization of the receptors IL2Ralpha and IL15Ralpha at the nanometer scale expressed on a human CD4+ leukemia T cell line using single-molecule-sensitive near-field scanning optical microscopy (NSOM). In agreement with previous findings, we here confirm clustering of IL2Ralpha and IL15Ralpha at the submicron scale.
View Article and Find Full Text PDFDC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection.
View Article and Find Full Text PDFThe blinking behavior of perylene diïmide molecules is investigated at the single-molecule level. We observe long-time scale blinking of individual multi-chromophoric complexes embedded in a poly(methylmethacrylate) matrix, as well as for the monomeric dye absorbed on a glass substrate at ambient conditions. In both these different systems, the blinking of single molecules is found to obey analogous power-law statistics for both the on and off periods.
View Article and Find Full Text PDFThe extent of photon energy transfer through individual DNA-based molecular wires composed of five dyes is investigated at the single molecular level. Combining single-molecule spectroscopy and pulse interleaved excitation imaging, we have directly resolved the time evolution spectral response of individual constructs, while simultaneously probing DNA integrity. Our data clearly show that intact wires exhibit photon-transfer efficiencies close to 100% across five dyes.
View Article and Find Full Text PDFWe present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton.
View Article and Find Full Text PDFThe synthesis and characterization of perylenediimide polyisocyanides is reported. In addition to short oligomers, our synthetic approach results in the formation of extremely long, well-defined, and rigid perylenediimide polymers. Ordering and close-packing of the chromophores in these long polymers is guaranteed by attachment to a polyisocyanide backbone with amino acid side chains.
View Article and Find Full Text PDFWe exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a radical unit via electron tunneling to a time-varying distribution of trapping sites in the surrounding polymer matrix.
View Article and Find Full Text PDFMolecular photonics is a new emerging field of research around the premise that it is possible to develop optical devices using single molecules as building blocks. Truly technological impact in the field requires focussed efforts on designing functional molecular devices as well as having access to their photonic properties on an individual basis. In this Minireview we discuss our approach towards the design and single-molecule investigation of one-dimensional multimolecular arrays intended to work as molecular photonic wires.
View Article and Find Full Text PDFWe report the first experimental study of individual molecules with femtosecond time resolution using a novel ultrafast single-molecule pump-probe method. A wide range of relaxation times from below 100 up to 400 fs is found, revealing energy redistribution over different vibrational modes and phonon coupling to the nanoenvironment. Addressing quantum-coupled molecules we find longer decay times, pointing towards inhibited intramolecular decay due to delocalized excitation.
View Article and Find Full Text PDFSingle fluorescent molecules (represented by spheres with a volume equal to the actual van der Waals volume of the molecule) has been embedded in a polystyrene matrix (left). Such molecules act as probes for the study of polymer nanoscale (segmental scale) dynamics in thin films deposited on a glass cover slide (right).
View Article and Find Full Text PDFThe C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm.
View Article and Find Full Text PDF