Publications by authors named "Erik Lysne"

Topologically nontrivial spin textures, such as skyrmions and dislocations, display emergent electrodynamics and can be moved by spin currents over macroscopic distances. These unique properties and their nanoscale size make them excellent candidates for the development of next-generation race-track memory and unconventional computing. A major challenge for these applications and the investigation of nanoscale magnetic structures in general is the realization of suitable detection schemes.

View Article and Find Full Text PDF

The direct current (dc) conductivity and emergent functionalities at ferroelectric domain walls are closely linked to the local polarization charges. Depending on the charge state, the walls can exhibit unusual dc conduction ranging from insulating to metallic-like, which is leveraged in domain-wall-based memory, multilevel data storage, and synaptic devices. In contrast to the functional dc behaviors at charged walls, their response to alternating currents (ac) remains to be resolved.

View Article and Find Full Text PDF

The formation of topological spin textures at the nanoscale has a significant impact on the long-range order and dynamical response of magnetic materials. We study the relaxation mechanisms at the conical-to-helical phase transition in the chiral magnet FeGe. By combining macroscopic ac susceptibility measurement, surface-sensitive magnetic force microscopy, and micromagnetic simulations, we demonstrate how the motion of magnetic topological defects, here edge dislocations, impacts the local formation of a stable helimagnetic spin structure.

View Article and Find Full Text PDF