For decades, it has been known that Liquid-Liquid Critical Points (LLCPs) can exist in one-component liquids, yet a comprehensive understanding of the conditions under which they arise remains elusive. To better comprehend the possible interplay between the LLCP and the crystalline phase, we conduct molecular dynamics simulations using the nonbonded family of modified-WAC (mWAC) models, which are known to exhibit a LLCP for certain parameter values. By comparing different versions of the mWAC model-those featuring a LLCP and those lacking one-we identify several key differences between the models relating to crystallization.
View Article and Find Full Text PDFWater is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets.
View Article and Find Full Text PDFRecently, it was shown that the Woodcock-Angell-Cheeseman model for liquid silica [L. V. Woodcock, C.
View Article and Find Full Text PDFWe discuss the dynamic behavior of two silica models, the BKS model (by van Beest, Kramer, and van Santen) and the WAC model (by Woodcock, Angell, and Cheeseman). Although BKS is considered the more realistic model for liquid silica, the WAC model has the unique property that it is very close to having a liquid-liquid critical point (LLCP), and this makes it particularly useful in studying the dynamics of models that do have a LLCP. We find that the diffusivity is a good indicator of how close a liquid is to criticality--the Si diffusivity shows a jump of 3-4 orders of magnitude when the pressure is reduced, which may be interpreted as an abrupt (though not first-order) transition from a high-density liquid state to a low-density liquid state.
View Article and Find Full Text PDFPrevious research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models (WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa.
View Article and Find Full Text PDFUsing linear scaling theory, we study the behavior of response functions extrema in the vicinity of the critical point. We investigate how the speed of convergence of the loci of response function extrema to the Widom line depends on the parameters of the linear scaling theory. We find that when the slope of the coexistence line is near zero, the line of specific heat maxima does not follow the Widom line but instead follows the coexistence line.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
We introduce a family of bounded repulsive potentials, which we call the cut ramp potential, obtained by cutting a linear ramp potential at different heights. We find that for the uncut ramp potential the system shows a region of anomalous re-entrant melting (a negative slope of the melting line in the temperature-pressure phase diagram), with waterlike anomalies in the same pressure range. At high pressure the melting line recovers a positive slope, a feature that we associate with the formation of clusters of particles separated by a more or less density-independent distance, the cluster separation, which is approximately equal to the ramp width sigma1.
View Article and Find Full Text PDF