Occupational exoskeletons and exosuits have been shown to reduce muscle demands and fatigue for physical tasks relevant to a variety of industries (e.g. logistics, construction, manufacturing, military, healthcare).
View Article and Find Full Text PDFWe investigated the extent to which an un-motorized, low-profile, elastic exosuit reduced the rate of fatigue for six lumbar extensor muscles during leaning. Six healthy subjects participated in an A-B-A (withdrawal design) study protocol, which involved leaning at 45º for up to 90 s without exosuit assistance (A1), then with assistance (B), then again without assistance (A2). The exosuit provided approximately 12-16 Nm of lumbar extension torque.
View Article and Find Full Text PDFIndividuals with lower-limb amputation often have difficulty walking on slopes, in part due to limitations of conventional prosthetic feet. Conventional prostheses have fixed ankle set-point angles and cannot fully replicate able-bodied ankle dynamics. Microprocessor-controlled ankles have been developed to help overcome these limitations.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
August 2018
Goal: The purpose of this study was: 1) to design and fabricate a biomechanically-assistive garment which was sufficiently lightweight and low-profile to be worn underneath, or as, clothing, and then 2) to perform human subject testing to assess the ability of the garment to offload the low back muscles during leaning and lifting.
Methods: We designed a prototype garment which acts in parallel with the low back extensor muscles to reduce forces borne by the lumbar musculature. We then tested eight healthy subjects while they performed common leaning and lifting tasks with and without the garment.
Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access.
View Article and Find Full Text PDFLung cancer is the most deadly form of cancer, and survival depends on early-stage diagnosis and treatment. Transoral access is preferable to traditional between-the-ribs needle insertion because it is less invasive and reduces risk of lung collapse. Yet many sites in the peripheral zones of the lung or distant from the bronchi cannot currently be accessed transorally, due to the relatively large diameter and lack of sufficient steerablity of current instrumentation.
View Article and Find Full Text PDF