The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations.
View Article and Find Full Text PDFIt is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect.
View Article and Find Full Text PDF