Publications by authors named "Erik Jeppesen"

Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.

View Article and Find Full Text PDF

Coastal waters are receiving increasing loads of dissolved organic carbon (DOC), differing in structural complexity and molecular weights with potential different effects on the phosphorus (P) dynamics in these waters. This study conducted an in-situ investigation in Xiangshan Harbor, China, to explore the patterns of P release in response to DOC inputs. To further elucidate the underlying mechanisms behind the DOC-affected sediment P release, a two-month mesocosm experiment was undertaken with coastal sediment (Xiangshan Harbor) to which acetate, glucose, and humic acid (representing the fermentation product, the simple available carbon, and the refractory humic-like carbon sources, respectively) were separately added to the overlying water at dosages of 0, 5, 10, and 20 mg C L.

View Article and Find Full Text PDF
Article Synopsis
  • Phytoplankton in lakes capture atmospheric CO2 and convert it to organic carbon (OC), but most OC is recycled back to the atmosphere as CO and methane (CH), contributing to climate change.
  • * The research identifies a 3.1-fold increase in CO-equivalent emissions over the next century, exacerbated by climate warming.
  • * While climate change boosts phytoplankton growth in many lakes, it can also negatively impact their ability to sequester CO-eq, potentially weakening this feedback loop over time.
View Article and Find Full Text PDF

Deep chlorophyll maximum (DCM), a chlorophyll peak in the water column, has important implications for biogeochemical cycles, energy flow and water surface algal blooms in deep lakes. However, how an observed periodically asymmetric DCM response to environmental variables remains unclear, limiting our in-depth understanding and effective eco-environmental management of deep lakes. Based on both monthly field investigations in 2021 and diel continuous observations in 2021-2023 in clear, monomictic Lake Fuxian, Southwest China, the temporal dynamics and drivers of DCM were examined and periodic features of DCM were found, with a formation period (FP, February-July) and a weakening period (WP, August-December).

View Article and Find Full Text PDF

Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality.

View Article and Find Full Text PDF

The state transition theory suggests that the decline of submerged macrophytes in shallow lakes is closely associated with reduced stoichiometric homeostasis, particularly phosphorus homeostasis (H). The degradation typically progresses from deeper to shallower regions, indicating a potential positive correlation between the deepwater adaptability (DA) and H values of submerged macrophytes. Here, we investigated the distribution pattern of submerged macrophytes across different water depths of Erhai Lake to test this hypothesis.

View Article and Find Full Text PDF

Phytoplankton has been used as a paradigm for studies of coexistence of species since the publication of the "paradox of the plankton." Although there are a wealth of studies about phytoplankton assemblages of lakes, reservoirs and rivers, our knowledge about phytoplankton biodiversity and its underlying mechanisms in mountain headwater stream ecosystems is limited, especially across regional scales with broad environmental gradients. In this study, we collected 144 phytoplankton samples from the Xijiang headwater streams of the Pearl River across low altitude (< 1,000 m) located in Guangxi province, intermediate altitude (1,000 m < altitude <2,000 m) in Guizhou province and high altitude (> 2,000 m) in Yunnan province of China.

View Article and Find Full Text PDF

Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used.

View Article and Find Full Text PDF

Climate change is one of the most significant challenges worldwide in the Anthropocene, and it is predicted to importantly affect biological diversity, especially in freshwaters. Freshwater fishes are facing considerable global threats, particularly in eco-sensitive semi-arid to arid areas such as the Arabian Peninsula, which is considered a highly stressed region in the Middle East. Endemic species are believed to display a narrow range of traits, with rarity reflecting adaptation to specific environmental regimes, and they are thus highly sensitive to environmental disturbances.

View Article and Find Full Text PDF

The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is a heterogeneous pool of compounds and exhibits diverse adsorption characteristics with or without phosphorous (P) competition. The impacts of these factors on the burial and mobilization of organic carbon and P in aquatic ecosystems remain uncertain. In this study, an algae-derived DOM (ADOM) and a commercially available humic acid (HA) with distinct compositions were assessed for their adsorption behaviors onto iron (oxy)hydroxides (FeOx), both in the absence and presence of phosphate.

View Article and Find Full Text PDF

Aquatic plants play a key role in the structuring and functioning of shallow lake ecosystems. However, eutrophication often triggers shifts in plant communities and species diversity, especially in the early stages when the water is still clear. Additionally, water depth is an important factor regulating aquatic plant communities.

View Article and Find Full Text PDF

Changes in salinity have a profound influence on ecological services and functions of inland freshwater ecosystems, as well as on the shaping of microbial communities. Bacterioplankton, generally classified into free-living (FL) and particle-attached (PA) forms, are main components of freshwater ecosystems and play key functional roles for biogeochemical cycling and ecological stability. However, there is limited knowledge about the responses of community stability of both FL and PA bacteria to salinity fluctuations.

View Article and Find Full Text PDF

Phytoplankton taxa are strongly interconnected as a network, which could show temporal dynamics and non-linear responses to changes in drivers at both seasonal and long-term scale. Using a high quality dataset of 20 Danish lakes (1989-2008), we applied extended Local Similarity Analysis to construct temporal network of phytoplankton communities for each lake, obtained sub-network for each sampling month, and then measured indices of network complexity and stability for each sub-network. We assessed how lake re-oligotrophication, climate warming and grazers influenced the temporal dynamics on network complexity and stability of phytoplankton community covering three aspects: seasonal trends, long-term trends and detrended variability.

View Article and Find Full Text PDF

Aquatic ecosystems are threatened by eutrophication from nutrient pollution. In lakes, eutrophication causes a plethora of deleterious effects, such as harmful algal blooms, fish kills and increased methane emissions. However, lake-specific responses to nutrient changes are highly variable, complicating eutrophication management.

View Article and Find Full Text PDF

Terrestrial inputs and subsequent degradation of dissolved organic matter (DOM) in lake ecosystems can result in rapid depletion of dissolved oxygen (DO). Inputs of terrestrial DOM including organic acids can also lead to decreases in pH. However, to date, few studies have investigated the linkages between terrestrial DOM inputs, DO and pH levels in the water column, and carbon dioxide (CO) emissions from lake ecosystems.

View Article and Find Full Text PDF

Due to the large spatiotemporal variability in the processes controlling carbon emissions from lakes, estimates of global lake carbon emission remain uncertain. Identifying the most reliable predictors of CO and CH concentrations across different hydrological features can enhance the accuracy of carbon emission estimates locally and globally. Here, we used data from 71 lakes in Southwest China varying in surface area (0.

View Article and Find Full Text PDF

Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source.

View Article and Find Full Text PDF

The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m), middle dosage (1140 g m), and high dosage (2280 g m).

View Article and Find Full Text PDF

Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops.

View Article and Find Full Text PDF