Human fibrinogen is a biomaterial used in surgical tissue sealants, scaffolding for tissue engineering, and wound healing. Here we report on the post-translational structure and functionality of recombinant human FI (rFI) made at commodity levels in the milk of transgenic dairy cows. Relative to plasma-derived fibrinogen (pdFI), rFI predominantly contained a simplified, neutral carbohydrate structure and >4-fold higher levels of the γ'-chain transcriptional variant that has been reported to bind thrombin and Factor XIII.
View Article and Find Full Text PDFThe ability to modify animal genomes rapidly at a specific locus would be valuable both for research purposes and in the development of animals suitable for xenotransplantation. In a proof-of-concept study, we used a unique, homology-dependent strand transferase protein called drosophila recombination-associated protein (DRAP) and DNA oligonucleotides to modify the porcine gene encoding alpha 1,3 galactosyl transferase (GGTA1). This gene is responsible for generating xenotransplantation antigens resulting in hyperacute rejection.
View Article and Find Full Text PDFPotential applications of cloning go well beyond the popularly envisioned replication of valuable animals. This is because targeted genetic modifications can be made in donor cells before nuclear transfer. Applications that are currently being pursued include therapeutic protein production in the milk and blood of transgenic cloned animals, the use of cells, tissues and organs from gene-modified animals for transplantation into humans and genetically modified livestock that produce healthier and safer products in an environmentally friendly manner.
View Article and Find Full Text PDFUsing an interwoven-loop experimental design in conjunction with highly conservative linear mixed model methodology using estimated variance components, 18 genes differentially expressed between nuclear transfer (NT)- and in vitro fertilization (IVF)-produced embryos were identified. The set is comprised of three intermediate-filament protein genes (cytokeratin 8, cytokeratin 19, and vimentin), three metabolic genes (phosphoribosyl pyrophosphate synthetase 1, mitochondrial acetoacetyl-coenzyme A thiolase, and alpha-glucosidase), two lysosomal-related genes (prosaposin and lysosomal-associated membrane protein 2), and a gene associated with stress responses (heat shock protein 27) along with major histocompatibility complex class I, nidogen 2, a putative transport protein, heterogeneous nuclear ribonuclear protein K, mitochondrial 16S rRNA, and ES1 (a zebrafish orthologue of unknown function). The three remaining genes are novel.
View Article and Find Full Text PDFHyperacute rejection of porcine organs by old world primate recipients is mediated through preformed antibodies against galactosyl-alpha-1,3-galactose (Galalpha-1,3-Gal) epitopes expressed on the pig cell surface. Previously, we generated inbred miniature swine with a null allele of the alpha-1,3-galactosyltransferase locus (GGTA1) by nuclear transfer (NT) with gene-targeted fibroblasts. To expedite the generation of GGTA1 null pigs, we selected spontaneous null mutant cells from fibroblast cultures of heterozygous animals for use in another round of NT.
View Article and Find Full Text PDFTo gain a better understanding of global methylation differences associated with development of nuclear transfer (NT)-generated cattle, we analyzed the genome-wide methylation status of spontaneously aborted cloned fetuses, cloned fetuses, and adult clones that were derived from transgenic and nontransgenic cumulus, genital ridge, and body cell lines. Cloned fetuses were recovered from ongoing normal pregnancies and were morphologically normal. Fetuses generated by artificial insemination (AI) were used as controls.
View Article and Find Full Text PDFCentral to the success of large animal cloning is the production of healthy animals that can provide products for human health, food, and other animal agriculture applications. We report development of cloned cattle derived from 34 genetically unique, nonembryonic cell lines using nuclear transfer performed between 1 January 1998 and 29 February 2000. Nearly 25% (535/2170) of the recipients receiving reconstructed embryos initiated pregnancy.
View Article and Find Full Text PDFThe pregnancy initiation and maintenance rates of nuclear transfer embryos produced from several bovine cell types were measured to determine which cell types produced healthy calves and had growth characteristics that would allow for genetic manipulation. Considerable variability between cell types from one animal and the same cell type from different animals was observed. In general, cultured fetal cells performed better with respect to pregnancy initiation and calving than adult cells with the exception of cumulous cells, which produced the highest overall pregnancy and calving rates.
View Article and Find Full Text PDF