Publications by authors named "Erik Herz"

Batteries, fuel cells and solar cells, among many other high-current-density devices, could benefit from the precise meso- to macroscopic structure control afforded by the silica sol-gel process. The porous materials made by silica sol-gel chemistry are typically insulators, however, which has restricted their application. Here we present a simple, yet highly versatile silica sol-gel process built around a multifunctional sol-gel precursor that is derived from the following: amino acids, hydroxy acids or peptides; a silicon alkoxide; and a metal acetate.

View Article and Find Full Text PDF

Nanoparticle-based materials, such as drug delivery vehicles and diagnostic probes, currently under evaluation in oncology clinical trials are largely not tumor selective. To be clinically successful, the next generation of nanoparticle agents should be tumor selective, nontoxic, and exhibit favorable targeting and clearance profiles. Developing probes meeting these criteria is challenging, requiring comprehensive in vivo evaluations.

View Article and Find Full Text PDF

Attached bacterial communities can generate three-dimensional (3D) physicochemical gradients that create microenvironments where local conditions are substantially different from those in the surrounding solution. Given their ubiquity in nature and their impacts on issues ranging from water quality to human health, better tools for understanding biofilms and the gradients they create are needed. Here we demonstrate the use of functional tomographic imaging via confocal fluorescence microscopy of ratiometric core-shell silica nanoparticle sensors (C dot sensors) to study the morphology and temporal evolution of pH microenvironments in axenic Escherichia coli PHL628 and mixed-culture wastewater biofilms.

View Article and Find Full Text PDF

Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude.

View Article and Find Full Text PDF

The development of molecularly targeted probes that exhibit high biostability, biocompatibility, and efficient clearance profiles is key to optimizing biodistribution and transport across biological barriers. Further, coupling probes designed to meet these criteria with high-sensitivity, quantitative imaging strategies is mandatory for ensuring early in vivo tumor detection and timely treatment response. These challenges have often only been examined individually, impeding the clinical translation of fluorescent probes.

View Article and Find Full Text PDF