Purpose: Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms.
View Article and Find Full Text PDFIntroduction: PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine.
View Article and Find Full Text PDFCancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces.
View Article and Find Full Text PDFBackground: Chondrosarcoma is a malignant cartilage forming bone tumour for which no effective systemic treatment is available. Previous studies illustrate the need for a better understanding of the role of the IGF pathway in chondrosarcoma to determine if it can be a target for therapy, which was therefore explored in this study.
Methods: Expression of mediators of IGF1R signalling and phosphorylation status of IRS1 was determined in chondrosarcoma cell lines by qRT-PCR and western blot.
Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of the surrounding collagen fiber network up to a distance of five times their radius.
View Article and Find Full Text PDFConventional high-grade osteosarcoma is the most common primary bone cancer with relatively high incidence in young people. Recurrent and metastatic tumors are difficult to treat. We performed a kinase inhibitor screen in two osteosarcoma cell lines, which identified MEK1/2 inhibitors.
View Article and Find Full Text PDFHigh-grade conventional osteosarcoma is the most common primary bone tumor. Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell lines to identify critical regulators of osteosarcoma cell survival.
View Article and Find Full Text PDFCells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications.
View Article and Find Full Text PDFConventional high-grade osteosarcoma is the most common primary bone sarcoma, with relatively high incidence in young people. In this study we found that expression of Aven correlates inversely with metastasis-free survival in osteosarcoma patients and is increased in metastases compared to primary tumours. Aven is an adaptor protein that has been implicated in anti-apoptotic signalling and serves as an oncoprotein in acute lymphoblastic leukaemia.
View Article and Find Full Text PDFThe field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients.
View Article and Find Full Text PDFIntegrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 expression can fully compensate for loss of α5β1 and other β1 integrins to support outside-in and inside-out force transmission.
View Article and Find Full Text PDFDNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status.
View Article and Find Full Text PDFImproved targeted therapies are needed to combat metastatic prostate cancer. Here, we report the identification of the spleen kinase SYK as a mediator of metastatic dissemination in zebrafish and mouse xenograft models of human prostate cancer. Although SYK has not been implicated previously in this disease, we found that its expression is upregulated in human prostate cancers and associated with malignant progression.
View Article and Find Full Text PDFGradients of soluble attractants as well as extracellular matrix (ECM) proteins serve as cues for directional cell movement. Such "chemotaxis" and "haptotaxis" steers migration of cells during embryonic development, wound healing, and immune responses. In this issue, Chan et al.
View Article and Find Full Text PDFInteractions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs.
View Article and Find Full Text PDFGenotoxic perturbation holds a central place in cancer formation and aging, but also is key to cancer therapy by irradiation or chemotherapeutic drugs. Sensing of DNA lesions initiates a highly complex DNA damage response (DDR). This response involves signaling cascades that activate appropriate damage repair pathways, arrest the cell cycle, and ultimately determine cell survival or death.
View Article and Find Full Text PDFRadiotherapy is one of the treatment options for locally or regionally advanced prostate cancer, but radioresistance of prostate cancer cells is a practical limitation of radiotherapy. The identification of molecular targets of radioresistance in prostate cancer is important to improve therapeutic intervention. The aim of this review is to give more biological insight into some well known processes involved in radioresistance of prostate cancer especially Apoptotic pathway; DNA damage response; and NF- κB(nuclear factor kappalight- chain-enhancer of activated B cells) signaling pathway.
View Article and Find Full Text PDFInteractions with the extracellular matrix (ECM) provide cells with physical and chemical cues that act in concert with growth factors to support survival and proliferation. Transmembrane receptors of the integrin family mediate ECM attachment and play important roles in sensing and responding to ECM properties. Integrin signaling involves large integrin-associated intracellular protein complexes that act as anchors for the cytoskeleton and as signaling hotspots where enzymes and substrates are concentrated.
View Article and Find Full Text PDFIn pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin.
View Article and Find Full Text PDFMicrotubule-destabilizing agents, such as vinca alkaloids (VAs), are part of the treatment currently applied in patients with high-risk neuroblastoma (NB). However, the development of drug resistance and toxicity make NB difficult to treat with these drugs. In this study we explore the combination of VAs (vincristine or vinblastine) with knockdown of the microtubule-associated proteins encoded by the doublecortin-like kinase (DCLK) gene by using short interference RNA (siRNA).
View Article and Find Full Text PDFInhibition of VEGF signalling effectively suppresses localized tumour growth but accelerates tumour invasiveness and micrometastasis by unknown mechanisms. To study the dynamic and reciprocal interactions between tumour cells and their microenvironment during these processes, we established a xenograft model by injecting tumour cells into the blood circulation of transparent zebrafish embryos. This reproducibly results in rapid simultaneous formation of a localized tumour and experimental micrometastasis, allowing time-resolved imaging of both processes at single-cell resolution within 1 week.
View Article and Find Full Text PDFA quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well plates coupled to image analysis algorithms quantifies spreading throughout the host. Findings in this model correlate with behavior in long-term rodent xenograft models for panels of poorly- versus highly malignant cell lines derived from breast, colorectal, and prostate cancer.
View Article and Find Full Text PDFCell spheroids (CS) embedded in 3D extracellular matrix (ECM) serve as in vitro mimics for multicellular structures in vivo. Such cultures, started either from spontaneous cell aggregates or single cells dispersed in a gel are time consuming, applicable to restricted cell types only, prone to high variation, and do not allow CS formation with defined spatial distribution required for high-throughput imaging. Here, we describe a method where cell-polymer suspensions are microinjected as droplets into collagen gels and CS formation occurs within hours for a broad range of cell types.
View Article and Find Full Text PDFCellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected.
View Article and Find Full Text PDF