Hydrogels provide a highly favorable matrix for immobilizing growth factors, enzymes or cells for biomedical applications like tissue engineering, drug delivery or the treatment of metabolic diseases. In this study we describe the synthesis and characterization of a hydrogel able to degrade L-ornithine, a metabolite that is highly elevated in congenital hyperornithinemia. The hydrogel was synthesized by embedding the L-ornithine-degrading enzymes L-ornithine aminotransferase (OAT) and L-ornithine decarboxylase (ODC) into a polymer network.
View Article and Find Full Text PDFMetabolite-responsive hydrogels that detect pathological metabolite concentrations and react by releasing a therapeutic stimulus hold high promises in treating metabolic diseases. In this study, a hydrogel is described that discriminates between physiological and pathological concentrations of urate, the causative agent of gouty arthritis. The hydrogel is synthesized by coupling a dimeric variant of the Deinococcus radiodurans-derived urate repressor HucR to linear polyacrylamide.
View Article and Find Full Text PDFThe Cu(I)-catalyzed cycloaddition of terminal azides and alkynes (click chemistry) represents a highly specific reaction for the functionalization of biomolecules with chemical moieties such as dyes or polymer matrices. In this study we evaluate the use of bicinchoninic acid (BCA) as a ligand for Cu(I) under physiological reaction conditions. We demonstrate that the BCA-Cu(I)-complex represents an efficient catalyst for the conjugation of fluorophores or biotin to alkyne- or azide-functionalized proteins resulting in increased or at least equal reaction yields compared to commonly used catalysts like Cu(I) in complex with TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) or BPAA (bathophenanthroline disulfonic acid).
View Article and Find Full Text PDFInducer-dependent prokaryotic transcriptional repressor proteins that originally evolved to orchestrate the transcriptome with intracellular and extracellular metabolite pools, have become universal tools in synthetic biology, drug discovery, diagnostics and functional genomics. Production of the repressor proteins is often limited due to inhibiting effects on the production host and requires iterative process optimization for each individual repressor. At the example of the Streptomyces pristinaespiralis-derived streptogramin-dependent repressor PIP, the expression of which was shown to inhibit growth of Escherichia coli BL21*, we demonstrate that the addition of the PIP-specific streptogramin antibiotic pristinamycin I neutralizes the growth-inhibiting effect and results in >100-fold increased PIP titers.
View Article and Find Full Text PDFDrug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor.
View Article and Find Full Text PDF