Recently, kafirins from white sorghum [ (L) Moench] grain have shown promise as a source of biopeptides with anti-skin aging effects (anti-inflammatory, antioxidant, and inhibition of photoaging-associated enzymes). This study employed response surface methodology (RSM) to optimize the extraction and enzymatic hydrolysis of kafirins (KAF) for the production of peptides with anti-skin aging properties. The optimization of conditions (reaction time and enzyme/substrate ratio) for liquefaction with α-amylase and hydrolysis of KAF with alcalase was performed using 3 complete factorial designs.
View Article and Find Full Text PDFBackground: Ultraviolet B (UVB) causes photoaging of the skin, the appearance of wrinkles, spots, and alteration of the skin barrier. The main cells in the most superficial layer of the skin are the keratinocytes; these cells play an important role in protecting this organ.
Objective: The present study aimed to investigate the antioxidant activity of the hydrolysates from kafirin to inhibit UVB-induced responses in human keratinocytes cells (HaCaT).
Blackberry fruits are appreciated as a source of nutrients and compounds related to benefit human health. However, they are highly perishable and very susceptible to decay factors. Current methods to improve and maintain blackberry quality are limited in use because of the fruit's fragile physical properties.
View Article and Find Full Text PDFThe interest in extracting kafirins (KAF), the main storage protein from sorghum grain has recently increased due to its gluten-free content and the significant scientific evidence showing the health benefits of the bioactive peptides from cereal grains in human diets. The objectives were to obtain the highest percentage of KAF extraction using amyloglucosidase as pretreatment to increase the extraction yield and predict the bioactive peptides in the KAF. In this study, pretreatments with amyloglucosidase increased the extraction yield of KAF compared with extraction methods using only ethanol and sodium metabisulfite.
View Article and Find Full Text PDF