Publications by authors named "Erik Fredlund"

Inhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): 'PTEN low' BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while 'PTEN high' BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery.

View Article and Find Full Text PDF

Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles.

View Article and Find Full Text PDF

Increased expression of GLI1, the main Hedgehog signalling pathway effector, is related to unfavourable prognosis and progressive disease of certain breast cancer subtypes. We used conditional transgenic mice induced to overexpress GLI1 in the mammary epithelium either alone or in combination with deletion of one Trp53 allele to address the role of elevated GLI1 expression in breast tumour initiation and progression. Induced GLI1 expression facilitates mammary gland tumour formation and this was further increased upon heterozygous deletion of Trp53.

View Article and Find Full Text PDF

In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete.

View Article and Find Full Text PDF
Article Synopsis
  • Subcellular localization is key to protein function, and this study offers a comprehensive analysis of protein localization across 12,418 genes in five cell lines using mass spectrometry.
  • The research uncovers insights on how alternative splicing, protein domains, and growth factors influence protein localization, revealing that most proteins have a primary subcellular location and that splicing has minimal impact on this aspect.
  • This work enhances our understanding of cellular architecture and is accessible to the public at www.subcellbarcode.org.
View Article and Find Full Text PDF

Human immune systems are variable, and immune responses are often unpredictable. Systems-level analyses offer increased power to sort patients on the basis of coordinated changes across immune cells and proteins. Allogeneic stem cell transplantation is a well-established form of immunotherapy whereby a donor immune system induces a graft-versus-leukemia response.

View Article and Find Full Text PDF

Background and purpose - Porous tantalum cups have been introduced as an alternative to various reinforcement rings in revision hip surgery. We hypothesized that porous tantalum cups would be superior to Müller acetabular roof reinforcement rings (MARRs) in revision hip surgery with re-revision for aseptic loosening as the primary outcome measure. Patients and methods - 207 hips operated with either a porous tantalum cup (TM cup, n = 111) or a MARR (n = 96) at index procedure were identified in our local arthroplasty register.

View Article and Find Full Text PDF

Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte-fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors.

View Article and Find Full Text PDF

A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma.

View Article and Find Full Text PDF

Transcriptionally active and inactive chromatin domains tend to segregate into separate sub-nuclear compartments to maintain stable expression patterns. However, here we uncovered an inter-chromosomal network connecting active loci enriched in circadian genes to repressed lamina-associated domains (LADs). The interactome is regulated by PARP1 and its co-factor CTCF.

View Article and Find Full Text PDF

Melanoma is currently divided on a genetic level according to mutational status. However, this classification does not optimally predict prognosis. In prior studies, we have defined gene expression phenotypes (high-immune, pigmentation, proliferative and normal-like), which are predictive of survival outcome as well as informative of biology.

View Article and Find Full Text PDF

Background: Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context.

Methods: In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico.

Results: Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes.

View Article and Find Full Text PDF

Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model.

View Article and Find Full Text PDF

SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway.

View Article and Find Full Text PDF

Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM).

View Article and Find Full Text PDF

Purpose: Ionizing radiation is a well-established carcinogen in rodent models and a risk factor associated with human cancer. We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53-null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in naïve hosts.

View Article and Find Full Text PDF

Introduction: Gene expression data derived from clinical cancer specimens provide an opportunity to characterize cancer-specific transcriptional programs. Here, we present an analysis delineating a correlation-based gene expression landscape of breast cancer that identifies modules with strong associations to breast cancer-specific and general tumor biology.

Methods: Modules of highly connected genes were extracted from a gene co-expression network that was constructed based on Pearson correlation, and module activities were then calculated using a pathway activity score.

View Article and Find Full Text PDF

While a growing body of evidence implicates regulatory miRNA modules in various aspects of human disease and development, insights into specific miRNA function remain limited. Here, we present an innovative approach to elucidate tissue-specific miRNA functions that goes beyond miRNA target prediction and expression correlation. This approach is based on a multi-level integration of corresponding miRNA and mRNA gene expression levels, miRNA target prediction, transcription factor target prediction and mechanistic models of gene network regulation.

View Article and Find Full Text PDF

Background: Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.

Methodology/principal Findings: We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells.

View Article and Find Full Text PDF

Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.

View Article and Find Full Text PDF

Nontransient hypoxia is strongly associated with malignant lesions, resulting in aggressive behavior and resistance to treatment. We present an analysis of mRNA and protein expression changes in neuroblastoma cell lines occurring upon the transition from normoxia to hypoxia. The correlation between mRNA and protein level changes was poor, although some known hypoxia-driven genes and proteins correlated well.

View Article and Find Full Text PDF

The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma (NB) cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion.

View Article and Find Full Text PDF

MYCN, a proto-oncogene normally expressed in the migrating neural crest, is in its amplified state a key factor in the genesis of human neuroblastoma (NB). However, the mechanisms underlying MYCN-mediated NB progression are poorly understood. Here, we present a MYCN-induced miRNA signature in human NB involving the activation and transrepression of several miRNA genes from paralogous clusters.

View Article and Find Full Text PDF

Purpose: Hypoxia is considered to be a major driving force behind tumor angiogenesis. The stabilization and activation at hypoxia of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha and the concomitant induction of expression of vascular endothelial growth factor (VEGF) and other proangiogenic factors provide a molecular frame for hypoxia-driven tumor angiogenesis. This study has investigated how HIF and VEGF protein levels relate to each other with regard to vascularization, tumor stage, and overall survival in neuroblastoma.

View Article and Find Full Text PDF