There is, at present, a lack of consensus regarding precisely what is meant by the term 'energy' across the sub-disciplines of neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings.
View Article and Find Full Text PDFThe definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.
View Article and Find Full Text PDFEntropy is not just a property of a system - it is a property of a system and an observer. Specifically, entropy is a measure of the amount of hidden information in a system that arises due to an observer's limitations. Here we provide an account of entropy from first principles in statistical mechanics with the aid of toy models of neural systems.
View Article and Find Full Text PDFFrida Kahlo (1907-1954) was a Mexican artist who is remembered for her self-portraits, pain and passion, and bold, vibrant colors. This work aims to use her life story and her artistic production in a longitudinal study to examine with quantitative tools the effects of physical and emotional pain (rage) on artistic expression. Kahlo suffered from polio as a child, was involved in a bus accident as a teenager where she suffered multiple fractures of her spine and had 30 operations throughout her lifetime.
View Article and Find Full Text PDFAn isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine standing somewhere within an isotropic system, we would not be able to differentiate between different lines of sight.
View Article and Find Full Text PDFThe principle of stationary action is a cornerstone of modern physics, providing a powerful framework for investigating dynamical systems found in classical mechanics through to quantum field theory. However, computational neuroscience, despite its heavy reliance on concepts in physics, is anomalous in this regard as its main equations of motion are not compatible with a Lagrangian formulation and hence with the principle of stationary action. Taking the Dynamic Causal Modelling (DCM) neuronal state equation as an instructive archetype of the first-order linear differential equations commonly found in computational neuroscience, we show that it is possible to make certain modifications to this equation to render it compatible with the principle of stationary action.
View Article and Find Full Text PDFThe glutamatergic modulator ketamine has been shown to rapidly reduce depressive symptoms in patients with treatment-resistant major depressive disorder (TRD). Although its mechanisms of action are not fully understood, changes in cortical excitation/inhibition (E/I) following ketamine administration are well documented in animal models and could represent a potential biomarker of treatment response. Here, we analyse neuromagnetic virtual electrode time series collected from the primary somatosensory cortex in 18 unmedicated patients with TRD and in an equal number of age-matched healthy controls during a somatosensory 'airpuff' stimulation task.
View Article and Find Full Text PDFWe derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries.
View Article and Find Full Text PDFAt the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions-and analyses-of distributed brain responses: namely, functional and . There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed connectivity that mediates neuronal message passing and dynamics on neuronal circuits.
View Article and Find Full Text PDFThe study of complex systems deals with emergent behavior that arises as a result of nonlinear spatiotemporal interactions between a large number of components both within the system, as well as between the system and its environment. There is a strong case to be made that neural systems as well as their emergent behavior and disorders can be studied within the framework of complexity science. In particular, the field of neuroimaging has begun to apply both theoretical and experimental procedures originating in complexity science-usually in parallel with traditional methodologies.
View Article and Find Full Text PDFThe propagation of epileptic seizure activity in the brain is a widespread pathophysiology that, in principle, should yield to intervention techniques guided by mathematical models of neuronal ensemble dynamics. During a seizure, neural activity will deviate from its current dynamical regime to one in which there are significant signal fluctuations. In silico treatments of neural activity are an important tool for the understanding of how the healthy brain can maintain stability, as well as of how pathology can lead to seizures.
View Article and Find Full Text PDFVincent van Gogh was one of the most influential artists of the Western world, having shaped the post-impressionist art movement by shifting its boundaries forward into abstract expressionism. His distinctive style, which was not valued by the art-buying public during his lifetime, is nowadays one of the most sought after. However, despite the great deal of attention from academic and artistic circles, one important question remains open: was van Gogh's original style a visual manifestation distinct from his troubled mind, or was it in fact a by-product of an impairment that resulted from the psychiatric illness that marred his entire life? In this paper, we use a previously published multi-scale model of brain function to piece together a number of disparate observations about van Gogh's life and art.
View Article and Find Full Text PDFIn contrast to the symmetries of translation in space, rotation in space, and translation in time, the known laws of physics are not universally invariant under transformation of scale. However, a special case exists in which the action is scale invariant if it satisfies the following two constraints: 1) it must depend upon a scale-free Lagrangian, and 2) the Lagrangian must change under scale in the same way as the inverse time, [Formula: see text]. Our contribution lies in the derivation of a generalised Lagrangian, in the form of a power series expansion, that satisfies these constraints.
View Article and Find Full Text PDFModels of coupled phase oscillators are used to describe a wide variety of phenomena in neuroimaging. These models typically rest on the premise that oscillator dynamics do not evolve beyond their respective limit cycles, and hence that interactions can be described purely in terms of phase differences. Whilst mathematically convenient, the restrictive nature of phase-only models can limit their explanatory power.
View Article and Find Full Text PDFLocal perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves.
View Article and Find Full Text PDFSome neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators).
View Article and Find Full Text PDFDynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change.
View Article and Find Full Text PDFTraumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs.
View Article and Find Full Text PDFThe analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task.
View Article and Find Full Text PDFBackground: Since Aerococcus sanguinicola was designated as a species in 2001, only a few cases of bacteremia have been reported. The aim with this study was to describe the clinical presentation of A sanguinicola bacteremia and to determine the antibiotic susceptibility and the capacity of the bacteria to form biofilm and to induce platelet aggregation.
Methods: Isolates of A sanguinicola from blood cultures were retrospectively identified from 2 clinical microbiology laboratories for 2006 to 2012.
Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution.
View Article and Find Full Text PDF