Publications by authors named "Erik Elebring"

Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver.

View Article and Find Full Text PDF

Background: Roux-en-Y gastric bypass (RYGB) is an effective treatment for obesity, resulting in long-term weight loss and rapid remission of type 2 diabetes mellitus. Improved glucagon-like peptide 1 (GLP-1) levels is one factor that contributes to the positive effects. Prior to RYGB, GLP-1 response is blunted which can be attributed to intestinal ketogenesis.

View Article and Find Full Text PDF

Ingestion of nutrients stimulates incretin secretion from enteroendocrine cells (EECs) of the epithelial layer of the gut. Glucagon-like peptide-1 (GLP-1) is one of these incretins that stimulate postprandial insulin release and signal satiety to the brain. Understanding the regulation of incretin secretion might open up new therapeutic options for obesity and type-2 diabetes mellitus.

View Article and Find Full Text PDF

Background And Aims: The conditions for jejunal glucose absorption in healthy subjects have not been thoroughly studied. In this study we investigated differences in enlargement factor, as well as of the surface enterocytes and mitochondria, comparing 2 weeks of high-carbohydrate (HCD) versus high-fat diets (HFD). We also measured the ketogenesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) in relation to jejunal mitochondria.

View Article and Find Full Text PDF

Background And Aims: Insights into the nature of gut adaptation after different diets enhance the understanding of how food modifications can be used to treat type 2 diabetes and obesity. The aim was to understand how diets, enriched in fat or carbohydrates, affect glucose absorption in the human healthy jejunum, and what mechanisms are involved.

Methods: Fifteen healthy subjects received, in randomised order and a crossover study design, two weeks of iso-caloric high-fat diet (HFD) and high-carbohydrate diet (HCD).

View Article and Find Full Text PDF

Granular study of metabolic responses to alterations in the ratio of dietary macro-nutrients can enhance our understanding of how dietary modifications influence patients with impaired glycemic control. In order to study the effect of diets enriched in fat or carbohydrates, fifteen healthy, normal-weight volunteers received, in a cross-over design, and in a randomized unblinded order, two weeks of an iso-caloric high-fat diet (HFD: 60E% from fat) and a high-carbohydrate diet (HCD: 60E% from carbohydrates). A mixed meal test (MMT) was performed at the end of each dietary period to examine glucose clearance kinetics and insulin and incretin hormone levels, as well as plasma metabolomic profiles.

View Article and Find Full Text PDF

The angiotensin II type 2 receptor (AT) is upregulated after tissue damage and mediates protective functions in the renin-angiotensin-aldosterone system (RAAS). One of these is to inhibit inducible nitric oxide synthase (iNOS) in activated macrophages. In the present study, we assessed the effect of AT receptor ligands on nitric oxide production in murine macrophages as a potential assay to determine the functional activity of an AT receptor ligand.

View Article and Find Full Text PDF

Objective: Food intake normally stimulates release of satiety and insulin-stimulating intestinal hormones, such as glucagon-like peptide (GLP)-1. This response is blunted in obese insulin resistant subjects, but is rapidly restored following Roux-en-Y gastric bypass (RYGB) surgery. We hypothesised this to be a result of the metabolic changes taking place in the small intestinal mucosa following the anatomical rearrangement after RYGB surgery, and aimed at identifying such mechanisms.

View Article and Find Full Text PDF

Androgens exert important effects both in androgen-responsive tissues and in the intestinal tract. To determine the impact of the gut microbiota (GM) on intestinal androgen metabolism, we measured unconjugated (free) and glucuronidated androgen levels in intestinal contents from the small intestine, with a low bacterial density, and from cecum and colon, with a high bacterial density. Using a specific, sensitive gas chromatography-tandem mass spectrometry method, we detected high levels of glucuronidated testosterone (T) and dihydrotestosterone (DHT) in small intestinal content of mice of both sexes, whereas in the distal intestine we observed remarkably high levels of free DHT, exceeding serum levels by >20-fold.

View Article and Find Full Text PDF

Tissue engineering of the whole pancreas can improve current treatments for diabetes mellitus. The ultimate goal is to tissue engineer pancreas from an allogeneic or xenogeneic source with human cells. A demonstration of methods for the efficient dissection, decellularization, and recellularization of porcine pancreas might benefit the field.

View Article and Find Full Text PDF

Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells.

View Article and Find Full Text PDF