Publications by authors named "Erik Cordes"

The ocean remains a reservoir of unknown biodiversity, particularly in the deep sea. Chemosynthesis-based ecosystems, such as hydrothermal vents and hydrocarbon seeps, host unique and diverse life forms that continue to be discovered and described. The present study focuses on patelliform gastropods (limpets) collected from Pacific Costa Rica Margin hydrocarbon seeps during three research cruises from 2017 to 2019.

View Article and Find Full Text PDF

Consistent species identification is foundational to biological research and requires coordination among a diversity of researchers and institutions. However, such consistency may be hindered for rare organisms where specimens, identification resources, and taxonomic experts are few. This is often the case for deep-sea taxonomic groups.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments.

View Article and Find Full Text PDF

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.

View Article and Find Full Text PDF

Like their shallow-water counterparts, cold-water corals create reefs that support highly diverse communities, and these structures are subject to numerous anthropogenic threats. Here, we present the genome assembly of from the southeastern coast of the USA, the first one for a deep-sea scleractinian coral species. We generated PacBio continuous long reads data for an initial assembly and proximity ligation data for scaffolding.

View Article and Find Full Text PDF
Article Synopsis
  • Ocean manipulation techniques, which aim to reduce the impacts of climate change, could disrupt and damage delicate deep-sea ecosystems.
  • These ecosystems are vital for biodiversity and play a key role in global carbon cycling, making their protection crucial.
  • The potential unintended consequences of such manipulation highlight the need for careful consideration and comprehensive research before implementation.
View Article and Find Full Text PDF

Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp.

View Article and Find Full Text PDF

Climate change is reorganizing the planet's biodiversity, necessitating proactive management of species and habitats based on spatiotemporal predictions of distributions across climate scenarios. In marine settings, climatic changes will predominantly manifest via warming, ocean acidification, deoxygenation, and changes in hydrodynamics. Lophelia pertusa, the main reef-forming coral present throughout the deep Atlantic Ocean (>200 m), is particularly sensitive to such stressors with stark reductions in suitable habitat predicted to accrue by 2100 in a business-as-usual scenario.

View Article and Find Full Text PDF

Environmental DNA (eDNA) quantification and sequencing are emerging techniques for assessing biodiversity in marine ecosystems. Environmental DNA can be transported by ocean currents and may remain at detectable concentrations far from its source depending on how long it persist. Thus, predicting the persistence time of eDNA is crucial to defining the spatial context of the information derived from it.

View Article and Find Full Text PDF

As biodiversity loss accelerates globally, understanding environmental influence over biodiversity-ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats).

View Article and Find Full Text PDF

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter.

View Article and Find Full Text PDF

Deep waters represent the largest biome on Earth and the largest ecosystem of Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine sediments, yet, they remain little explored. We studied fungal diversity and community composition in several marine sediments from 16 locations sampled along a bathymetric gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length in the Eastern Tropical Pacific (ETP) of Costa Rica.

View Article and Find Full Text PDF

In the Caribbean Basin the distribution and diversity patterns of deep-sea scleractinian corals and stylasterid hydrocorals are poorly known compared to their shallow-water relatives. In this study, we examined species distribution and community assembly patterns of scleractinian and stylasterid corals on three high-profile seamounts within the Anegada Passage, a deep-water throughway linking the Caribbean Sea and western North Atlantic. Using remotely operated vehicle surveys conducted on the E/V by the ROV in 2014, we characterized coral assemblages and seawater environmental variables between 162 and 2,157 m on Dog Seamount, Conrad Seamount, and Noroît Seamount.

View Article and Find Full Text PDF

Cold-water corals (CWCs) are important foundation species in the world's largest ecosystem, the deep sea. They support a rich faunal diversity but are threatened by climate change and increased ocean acidification. As part of this study, fragments from three genetically distinct Lophelia pertusa colonies were subjected to ambient pH (pH = 7.

View Article and Find Full Text PDF

Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid and sabellid ) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δC of -44 to -58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface.

View Article and Find Full Text PDF

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services.

View Article and Find Full Text PDF

There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosystem services in the deep ocean. These corals are threatened by increasing anthropogenic impacts to the deep-sea, such as global ocean change and hydrocarbon extraction.

View Article and Find Full Text PDF

Exploration of the deep sea off the Pacific margin of Costa Rica has resulted in the discovery of a number of new species and reports for the region. Here, we report on the occurrence of the octocoral genus Swiftia, and describe a new species collected by the Alvin submersible off the Pacific coast of Costa Rica. The new species has been observed at around 1000 m depth, growing on authigenic carbonates near methane seeps.

View Article and Find Full Text PDF

The global decrease in seawater pH known as ocean acidification has important ecological consequences and is an imminent threat for numerous marine organisms. Even though the deep sea is generally considered to be a stable environment, it can be dynamic and vulnerable to anthropogenic disturbances including increasing temperature, deoxygenation, ocean acidification and pollution. is among the better-studied cold-water corals but was only recently documented along the US West Coast, growing in acidified conditions.

View Article and Find Full Text PDF

Deep-sea coral communities are key components of the Gulf of Mexico ecosystem and were adversely affected by the Deepwater Horizon (DWH) oil spill. Coral colonies exposed to oil and dispersant exhibited mortality, damage and physiological signatures of stress. Understanding how corals respond to oil and dispersant exposure at the molecular level is important to elucidate the sublethal effects of the DWH disaster and reveal broader patterns of coral stress responses.

View Article and Find Full Text PDF

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms.

View Article and Find Full Text PDF

The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature.

View Article and Find Full Text PDF

The ecological and evolutionary processes that interact to shape community structure are poorly studied in the largest environment on earth, the deep sea. Phylogenetic data and morphological traits of octocorals were coupled with environmental factors to test hypotheses of community assembly in the deep (250-2500 m) Gulf of Mexico. We found lineage turnover at a depth of 800-1200 m, with isidids and chrysogorgiids at deeper depths and a diversity of species from across the phylogeny occupying shallower depths.

View Article and Find Full Text PDF