We present a review of recent developments in powered ankle-foot prostheses (PAFPs), with emphasis on actuation, high- and low-level control strategies, and pneumatic, hydraulic, and electromechanical actuators. A high-level control strategy based on finite-state machines, combined with low-level control that drives the ankle torque, is the most common control strategy. On the other hand, brushless direct-current motors along with an energy storage and release mechanism are commonly used to reduce the overall size of the actuators and increase PAFP autonomy.
View Article and Find Full Text PDFTo achieve human upright posture (UP) and avoid falls, the central nervous system processes visual, vestibular, and proprioceptive information to activate the appropriate muscles to accelerate or decelerate the body's center of mass. In this process, sensory-motor (SM) latencies and muscular deficits, even in healthy older adults, may cause falls. This condition is worse for people with chronic neuromuscular deficits (stroke survivors, patients with multiple sclerosis or Parkinson's disease).
View Article and Find Full Text PDF