Exogenous phenolate -hydroxylation by copper oxidants formed from dioxygen is generally thought to occur through one of two limiting mechanisms defined by the structure of the active oxidant: an electrophilic μ-η:η-peroxo-bis-copper(II) species as found in the oxygenated form of the binuclear copper enzyme tyrosinase (oxyTyr), or an isomeric bis(μ-oxido)-bis-copper(III) species (O) with ligated phenolate(s) as evidenced by most synthetic systems. The characterization of the latter is limited due to their limited thermal stability. This study expands the scope of an O species with ligated phenolate(s) using ,'-di--butyl-1,3-propanediamine (DBPD), a flexible secondary diamine ligand.
View Article and Find Full Text PDFWe disclose herein the synthesis and characterization of L2Cu(iii)2O2 and L3Cu(iii)Cu(ii)2O2 complexes with nitrogen ligation exclusively from imidazoles for the first time. Their accessibility by direct oxygenation of a L-Cu(i) precursor and the resulting Cu(iii) formation inform on the kinetic accessibility and thermodynamic superiority of imidazole in stabilizing Cu(iii).
View Article and Find Full Text PDFThe tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with Cu, and the resulting Cu complex () was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for , as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [] was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a Cu-phenoxyl radical complex in solution.
View Article and Find Full Text PDFHistamine chelation of copper(I) by a terminal histidine residue in copper hydroxylating enzymes activates dioxygen to form unknown oxidants, generally assumed as copper(II) species. The direct formation of copper(III)-containing products from the oxygenation of histamine-ligated copper(I) complexes is demonstrated here, indicating that copper(III) is a viable oxidation state in such products from both kinetic and thermodynamic perspectives. At low temperatures, both trinuclear Cu(II)2Cu(III)O2 and dinuclear Cu(III)2O2 predominate, with the distribution dependent on the histamine ligand structure and oxygenation conditions.
View Article and Find Full Text PDFTyrosinases are ubiquitous binuclear copper enzymes that oxygenate to Cu(II) 2 O2 cores bonded by three histidine Nτ-imidazoles per Cu center. Synthetic monodentate imidazole-bonded Cu(II) 2 O2 species self-assemble in a near quantitative manner at -125 °C, but Nπ-ligation has been required. Herein, we disclose the syntheses and reactivity of three Nτ-imidazole bonded Cu(II) 2 O2 species at solution temperatures of -145 °C, which was achieved using a eutectic mixture of THF and 2-MeTHF.
View Article and Find Full Text PDFThe mechanisms of dioxygen activation and methane C-H oxidation in particulate methane monooxygenase (pMMO) are currently unknown. Recent studies support a binuclear copper site as the catalytic center. We report the low-temperature assembly of a high-valent dicopper(III) bis(μ-oxide) complex bearing marked structural fidelity to the proposed active site of pMMO.
View Article and Find Full Text PDFHere we report the formation of the first examples of dicopper(III) bis(μ-oxo) complexes ligated by the primary amines, propylenediamine, and N,N,-dimethyl propylenediamine. Stabilization of these new compounds is effected at -125 °C by "core capture"- introduction of exogenous ligand to a preformed dicopper(III) bis(μ-oxo) complex supported by the peralkylated tetramethyl propylenediamine. Primary amine ligation in these compounds matches the single primary amine coordination of the putative active site of particulate methane monooxygenase (pMMO) and polysaccharide monooxygenase.
View Article and Find Full Text PDFCopper thiolate/disulfide interconversions are related to the functions of several important proteins such as human Sco1, Cu-Zn superoxide dismutase (SOD1), and mammalian zinc-bonded metallothionein. The synthesis and characterization of well-defined synthetic analogues for such interconversions are challenging yet provide important insights into the mechanisms of such redox processes. Solvent-dependent redox isomerization and proton-coupled electron transfer mimicking these interconversions are observed in two structurally related dimeric μ,η(2):η(2)-thiolato Cu(II)Cu(II) complexes by various methods, including X-ray diffraction, XAS, NMR, and UV-vis.
View Article and Find Full Text PDFThe electronic structure of a doubly oxidized Ni salen complex NiSal(tBu) (Sal(tBu) = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) has been investigated by both experimental and theoretical methods. The doubly oxidized product was probed by resonance Raman spectroscopy, UV-vis-NIR, and EPR to determine the locus of oxidation as well as the spectroscopic signature of the complex. It was determined that double oxidation of NiSal(tBu) affords a bis-ligand radical species in solution via the presence of phenoxyl radical bands at ν(7a) (1504 cm(-1)) and ν(8a) (1579 cm(-1)) in the Raman spectrum, and the loss of the intense NIR transition reported for the mono-radical complex (Angew.
View Article and Find Full Text PDFNonsymmetric substitution of salen (1(R(1),R(2))) and reduced salen (2(R(1),R(2))) Cu(II)-phenoxyl complexes with a combination of -(t)Bu, -S(i)Pr, and -OMe substituents leads to dramatic differences in their redox and spectroscopic properties, providing insight into the influence of the cysteine-modified tyrosine cofactor in the enzyme galactose oxidase (GO). Using a modified Marcus-Hush analysis, the oxidized copper complexes are characterized as Class II mixed-valent due to the electronic differentiation between the two substituted phenolates. Sulfur K-edge X-ray absorption spectroscopy (XAS) assesses the degree of radical delocalization onto the single sulfur atom of nonsymmetric [1((t)Bu,SMe)](+) at 7%, consistent with other spectroscopic and electrochemical results that suggest preferential oxidation of the -SMe bearing phenolate.
View Article and Find Full Text PDFThe enzyme tyrosinase contains two Cu(I) centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O(2) to form a µ-η(2):η(2)-peroxo-dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, Cu(I) and O(2) at -125 °C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2011
Integrating sulfanyl substituents into copper-bonded phenoxyls significantly alters their optical and redox properties and provides insight into the influence of cysteine modification of the tyrosine cofactor in the enzyme galactose oxidase. The model complexes [1(SR2)](+) are class II mixed-valent Cu(II)-phenoxyl-phenolate species that exhibit intervalence charge transfer bands and intense visible sulfur-aryl π → π* transitions in the energy range, which provides a greater spectroscopic fidelity to oxidized galactose oxidase than non-sulfur-bearing analogs. The potentials for phenolate-based oxidations of the sulfanyl-substituted 1(SR2) are lower than the alkyl-substituted analogs by up to ca.
View Article and Find Full Text PDFA MerR family metalloregulatory protein CupR selectively responds to gold stress in Ralstonia metallidurans. A distorted trigonal geometry appears to be used by CupR to achieve the highly sensitive (K(d) approximately 10(-35) M) and selective recognition of gold(I).
View Article and Find Full Text PDFDespite a wealth of studies exemplifying the utility of the 2-5 keV X-ray range in speciation and electronic structure elucidation, the exploitation of this energy regime for the study of photochemical processes has not been forthcoming. Herein, a new endstation set-up for in situ photochemical soft X-ray spectroscopy in the 2-5 keV energy region at the Stanford Synchrotron Radiation Lightsource is described for continuous photolysis under anaerobic conditions at both cryogenic and ambient temperatures. Representative examples of this approach are used to demonstrate the potential information content in several fields of study, including organometallic chemistry, biochemistry and materials chemistry.
View Article and Find Full Text PDFA new hybrid permethylated-amine-guanidine ligand based on a 1,3-propanediamine backbone (2L) and its Cu-O2 chemistry is reported. [(2L)CuI(MeCN)]1+ complex readily oxygenates at low temperatures in polar aprotic solvents to form a bis(mu-oxo)dicopper(III) (O) species (2b), similar to the parent bis-guanidine ligand complex (1b) and permethylated-diamine ligand complex (3b). UV-vis and X-ray absorption spectroscopy experiments confirm this assignment of 2b as an O species, and full formation of the 2:1 Cu-O2 complex is demonstrated by an optical titration with ferrocene-monocarboxylic acid (FcCOOH).
View Article and Find Full Text PDFThe geometric and electronic structure of an oxidized Cu complex ([CuSal](+); Sal = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV-vis-NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal](+) (Storr, T.
View Article and Find Full Text PDFThe cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximately 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or with a nitrosyl donor and was stable at 23 degrees C for hours.
View Article and Find Full Text PDFThe excited-state structural dynamics of nickel(II)tetrakis(2,4,6-trimethylphenyl)porphyrin (NiTMP) and nickel(II)tetrakis(tridec-7-yl)porphyrin (NiSWTP) in a toluene solution were investigated via ultrafast transient optical absorption spectroscopy. An ultrashort stimulated emission between 620 and 670 nm from the S1 state was observed in both nickel porphyrins only when this state was directly generated via Q-band excitation, whereas such a stimulated emission was absent under B (Soret)-band excitation. Because the stimulated emission in the spectral region occurs only from the S1 state, this photoexcitation-wavelength-dependent behavior of Ni(II) porphyrins is attributed to a faster intersystem crossing from the S2 state than the internal conversion S2 --> S1.
View Article and Find Full Text PDFHemes (iron porphyrins) are involved in a range of functions in biology, including electron transfer, small-molecule binding and transport, and O2 activation. The delocalization of the Fe d-electrons into the porphyrin ring and its effect on the redox chemistry and reactivity of these systems has been difficult to study by optical spectroscopies due to the dominant porphyrin pi-->pi(*) transitions, which obscure the metal center. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.
View Article and Find Full Text PDFDistinct spectral features at the Fe L-edge of the two compounds K3[Fe(CN)6] and K4[Fe(CN)6] have been identified and characterized as arising from contributions of the ligand pi orbitals due to metal-to-ligand back-bonding. In addition, the L-edge energy shifts and total intensities allow changes in the ligand field and effective nuclear charge to be determined. It is found that the ligand field term dominates the edge energy shift.
View Article and Find Full Text PDF