Standard signal processing approaches for scintillation detectors in positron emission tomography (PET) derive accurate estimates for 511 keV photon time of interaction and energy imparted to the detection media from aggregate characteristics of electronic pulse shapes. The ultimate realization of a scintillation detector for PET is one that provides a unique timestamp and position for each detected scintillation photon. Detectors with these capabilities enable advanced concepts for three-dimensional (3D) position and time of interaction estimation with methods that exploit the spatiotemporal arrival time kinetics of individual scintillation photons.
View Article and Find Full Text PDFNeutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2016
Observer models were developed to process data in list-mode format in order to perform binary discrimination tasks for use in an arms-control-treaty context. Data used in this study was generated using GEANT4 Monte Carlo simulations for photons using custom models of plutonium inspection objects and a radiation imaging system. Observer model performance was evaluated and presented using the area under the receiver operating characteristic curve.
View Article and Find Full Text PDF