This paper investigates merits of using a wood-based biocrude (WB) from aspen wood to improve the compatibility of halloysite nanotubes (HNTs) with high-impact polystyrene to develop nanocomposites with desirable thermomechanical properties. Morphological, thermal, and rheological properties of the resulting nanocomposite are used as indicators of the compatibility and dispersion of the modified HNT within the polymer matrix. Computational modeling using density functional theory is used along with laboratory experiments to provide a multiscale characterization of the above biocrude and nanocomposites.
View Article and Find Full Text PDF