As climate warms, tropical species are expanding their distribution to temperate ecosystems where they are confronted with novel predators and habitats. Predation strongly regulates ecological communities, and range-extending species that adopt an effective antipredator strategy have a higher likelihood to persist in non-native environments. Here, we test this hypothesis by comparing various proxies of antipredator and other fitness-related behaviours between range-extending tropical fishes and native-temperate fishes at multiple sites across a 730 km latitudinal range.
View Article and Find Full Text PDFCoral-reef fishes are shifting their distributions poleward in response to human-mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate-latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co-occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm-temperate and cold-temperate).
View Article and Find Full Text PDFAs ocean waters warm due to climate change, tropical species are shifting their ranges poleward to remain within their preferred thermal niches. As a result, novel communities are emerging in which tropical species interact with local temperate species, competing for similar resources, such as food and habitat. To understand how range-extending coral reef fish species perform along their leading edges when invading temperate ecosystems, we studied proxies of their fitness, including somatic growth (length increase), feeding rates, and body condition, along a 730-km latitudinal gradient situated in one of the global warming hotspots.
View Article and Find Full Text PDFNiche segregation allows competing species to capture resources in contrasting ways so they can co-exist and maintain diversity, yet global change is simplifying ecosystems and associated niche diversity. Whether climate perturbations alter niche occupancy among co-occurring species and affect species diversity is a key, but unanswered question. Using CO vents as natural analogues of ocean acidification, we show that competing fish species with overlapping diets are partially segregated across microhabitat niches and differently-orientated substrata under ambient CO conditions.
View Article and Find Full Text PDFThe Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas.
View Article and Find Full Text PDFThe health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef).
View Article and Find Full Text PDF