In recent years, research has highlighted the association between increased adipose tissue surrounding the human heart and elevated susceptibility to cardiovascular diseases such as atrial fibrillation and coronary heart disease. However, the manual segmentation of these fat deposits has not been widely implemented in clinical practice due to the substantial workload it entails for medical professionals and the associated costs. Consequently, the demand for more precise and time-efficient quantitative analysis has driven the emergence of novel computational methods for fat segmentation.
View Article and Find Full Text PDFA retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that computes pixel-level vessel continuity while introducing a local tolerance heuristic to fill in vessel discontinuities produced by the Frangi response.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2020
Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors.
View Article and Find Full Text PDFThe quantification of fat depots on the surroundings of the heart is an accurate procedure for evaluating health risk factors correlated with several diseases. However, this type of evaluation is not widely employed in clinical practice due to the required human workload. This work proposes a novel technique for the automatic segmentation of cardiac fat pads.
View Article and Find Full Text PDF