Background: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans.
View Article and Find Full Text PDFThe intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people).
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. We used a previously developed model of gHAT fitted to data from the Democratic Republic of the Congo, the country with the highest global case burden, to explore how interruptions to intervention activities, due to e.
View Article and Find Full Text PDFLancet Infect Dis
April 2023
Background: Human African trypanosomiasis caused by Trypanosoma brucei gambiense (gambiense HAT) in patients with late-stage disease requires hospital admission to receive nifurtimox-eflornithine combination therapy (NECT). Fexinidazole, the latest treatment that has been recommended by WHO, also requires systematic admission to hospital, which is problematic in areas with few health-care resources. We aim to assess the safety and efficacy of acoziborole in adult and adolescent patients with gambiense HAT.
View Article and Find Full Text PDFBackground: Detection of spliced leader (SL)-RNA allows sensitive diagnosis of gambiense human African trypanosomiasis (HAT). We investigated its diagnostic performance for treatment outcome assessment.
Methods: Blood and cerebrospinal fluid (CSF) from a consecutive series of 97 HAT patients, originating from the Democratic Republic of the Congo, were prospectively collected before treatment with acoziborole, and during 18 months of longitudinal follow-up after treatment.
Domestic and wild animals are important reservoirs of the rhodesiense form of human African trypanosomiasis (rHAT), however quantification of this effect offers utility for deploying non-medical control activities, and anticipating their success when wildlife are excluded. Further, the uncertain role of animal reservoirs-particularly pigs-threatens elimination of transmission (EOT) targets set for the gambiense form (gHAT). Using a new time series of high-resolution cattle and pig density maps, HAT surveillance data collated by the WHO Atlas of HAT, and methods drawn from causal inference and spatial epidemiology, we conducted a retrospective ecological cohort study in Uganda, Malawi, Democratic Republic of the Congo (DRC) and South Sudan to estimate the effect of cattle and pig density on HAT risk.
View Article and Find Full Text PDFMore than one billion people rely on livestock for income, nutrition, and social cohesion, however livestock keeping can facilitate disease transmission and contribute to climate change. While data on the distribution of livestock have broad utility across a range of applications, efforts to map the distribution of livestock on a large scale are limited to the Gridded Livestock of the World (GLW) project. We present a complimentary effort to map the distribution of cattle and pigs in Malawi, Uganda, Democratic Republic of Congo, and South Sudan.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT) is considered a highly promising candidate for elimination within the next decade. This paper argues that the experiential knowledge of frontline health workers will be critical to achieve this goal. Interviews are used to explore the ways in which HAT workers understand, maintain, and adjust their skills amidst global and national challenges.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is marked for elimination of transmission by 2030, but the disease persists in several low-income countries. We couple transmission and health outcomes models to examine the cost-effectiveness of four gHAT elimination strategies in five settings - spanning low- to high-risk - of the Democratic Republic of Congo. Alongside passive screening in fixed health facilities, the strategies include active screening at average or intensified coverage levels, alone or with vector control with a scale-back algorithm when no cases are reported for three consecutive years.
View Article and Find Full Text PDFBackground: Spliced Leader (SL) trypanosome RNA is detectable only in the presence of live trypanosomes, is abundant and the Trypanozoon subgenus has a unique sequence. As previously shown in blood from Guinean human African trypanosomiasis (HAT) patients, SL-RNA is an accurate target for diagnosis. Detection of SL-RNA in the cerebrospinal fluid (CSF) has never been attempted.
View Article and Find Full Text PDFBackground: The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s.
Methods: We use mathematical models fitted to longitudinal data to estimate the probability that selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We examine the impact of active screening coverage on the certainty of model estimates for transmission and therefore the role of screening in the measurement of EOT.
Background: Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes can be efficiently allocated whilst continuing to avert morbidity and mortality.
Methods: We implement a cost-effectiveness analysis using a stochastic gHAT infection model for a range of active screening strategies and, in conjunction with a cost model, we calculate the net monetary benefit (NMB) of each strategy.
Many control programmes against neglected tropical diseases have been interrupted due to the coronavirus disease 2019 (COVID-19) pandemic, including those that rely on active case finding. In this study we focus on gambiense human African trypanosomiasis (gHAT), where active screening was suspended in the Democratic Republic of Congo (DRC) due to the pandemic. We use two independent mathematical models to predict the impact of COVID-19 interruptions on transmission and reporting and achievement of the 2030 elimination of transmission (EOT) goal for gHAT in two moderate-risk regions of the DRC.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions.
View Article and Find Full Text PDFOver the past 20 years there has been a >95% reduction in the number of Gambian Human African trypanosomiasis (g-HAT) cases reported globally, largely as a result of large-scale active screening and treatment programmes. There are however still foci where the disease persists, particularly in parts of the Democratic Republic of the Congo (DRC). Additional control efforts such as tsetse control using Tiny Targets may therefore be required to achieve g-HAT elimination goals.
View Article and Find Full Text PDFWhile academic literature has paid careful attention to the technological efforts-drugs, tests, and tools for vector control-deployed to eliminate Gambiense Human African Trypanosomiasis (HAT), the human resources and health systems dimensions of elimination are less documented. This paper analyses the perspectives and experiences of frontline nurses, technicians, and coordinators who work for the HAT programme in the former province of Bandundu in the Democratic Republic of the Congo, at the epidemic's very heart. The research is based on 21 semi-structured interviews conducted with frontline workers in February 2018.
View Article and Find Full Text PDFBackground: Gambiense human African trypanosomiasis ([gHAT] sleeping sickness) is a vector-borne disease that is typically fatal without treatment. Intensified, mainly medical-based, interventions in endemic areas have reduced the occurrence of gHAT to historically low levels. However, persistent regions, primarily in the Democratic Republic of Congo (DRC), remain a challenge to achieving the World Health Organization's goal of global elimination of transmission (EOT).
View Article and Find Full Text PDFHuman African Trypanosomiasis (HAT) is a neglected disease caused by the protozoan parasites Trypanosoma brucei and transmitted by tsetse flies that progresses in two phases. Symptoms in the first phase include fever, headaches, pruritus, lymphadenopathy, and in certain cases, hepato- and splenomegaly. Neurological disorders such as sleep disorder, aggressive behavior, logorrhea, psychotic reactions, and mood changes are signs of the second stage of the disease.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is one of several neglected tropical diseases that is targeted for elimination by the World Health Organization. Recent years have seen a substantial decline in the number of globally reported cases, largely driven by an intensive process of screening and treatment. However, this infection is highly focal, continuing to persist at low prevalence even in small populations.
View Article and Find Full Text PDF