Purpose: To determine the feasibility of using a 2-dimensional quantitative digital subtraction venography (qDSV) technique that employs a temporally modulated contrast medium injection to quantify blood velocity in phantom, normal, and stenotic porcine iliac vein models.
Materials And Methods: Blood velocity was calculated using qDSV following temporally modulated pulsed injections of iodinated contrast medium and compared with Doppler ultrasound (US) measurements (phantom, in-line sensor; in vivo, diagnostic linear probe). Phantom evaluation was performed in a compliant polyethylene tube phantom with simulated venous flow.
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions and killed more than 1.7 million people worldwide as of December 2020. Healthcare providers are at increased risk of infection when caring for patients with COVID-19.
View Article and Find Full Text PDFBackground And Purpose: Safe and effective use of newly developed devices for aneurysm treatment requires the ability to make accurate measurements in the angiographic suite. Our purpose was to determine the parameters that optimize the geometric accuracy of three-dimensional (3D) vascular reconstructions.
Methods: An in vitro flow model consisting of a peristaltic pump, plastic tubing, and 3D printed patient-specific aneurysm models was used to simulate blood flow in an intracranial aneurysm.
A conventional three-dimensional/four-dimensional (3D/4D) digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full-dose acquisition. A full-dose mask and fill acquisition were acquired from a clinical study to provide a known full-dose reference reconstruction.
View Article and Find Full Text PDF