The tear film is a highly dynamic biofluid capable of reflecting pathology-associated molecular changes, not only in the ocular surface but also in other tissues and organs. Molecular analysis of this biofluid offers a non-invasive way to diagnose or monitor diseases, assess medical treatment efficacy, and identify possible biomarkers. Due to the limited sample volume, collecting tear samples requires specific skills and appropriate tools to ensure high quality and maximum efficiency.
View Article and Find Full Text PDFCross-linked polymer blends from natural compounds, namely gelatin (Gel), chitosan (CS), and synthetic poly (vinyl alcohol) (PVA), have received increasing scrutiny because of their versatility, biocompatibility, and ease of use for tissue engineering. Previously, Gel/CS/PVA [1:1:1] hydrogel produced via the freeze-drying process presented enhanced mechanical properties. This study aimed to investigate the biocompatibility and chondrogenic potential of a steam-sterilized Gel/CS/PVA hydrogel using differentiation of human adipose-derived mesenchymal stromal cells (AD-hMSC) and cartilage marker expression.
View Article and Find Full Text PDFRetinal Müller cells secrete extracellular vesicles that can be captured by other Müller cells. In response to a signal that may be deleterious for the retina, Müller glia-derived extracellular vesicles spread instructions to induce gene expression changes in other cells.
View Article and Find Full Text PDFMüller glial cells exert multiple essential functions in retinal physiology and retinopathies reflecting perhaps the existence of distinct Müller cellular subpopulations. Harnessing Müller cell heterogeneity may serve to enhance new therapeutic approaches for retinal disease.
View Article and Find Full Text PDF