Publications by authors named "Erick I Saavedra-Flores"

Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world.

View Article and Find Full Text PDF

One crucial property of concrete, particularly in construction, is its thermal conductivity, which impacts heat transfer through conduction. For example, reducing the thermal conductivity of concrete can lead to energy savings in buildings. Various techniques exist for measuring the thermal conductivity of materials, but there is limited discussion in the literature about suitable methods for concrete.

View Article and Find Full Text PDF

This paper investigates the hemp limecrete mechanical and microstructural performance of a new sustainable and environmental friendly building material. Several studies have investigated the hemp limecrete focusing on the non-structural applications. The newly developed hemp limecrete consists of high mechanical and microstructural properties.

View Article and Find Full Text PDF

This research aimed to determine how a super absorbent polymer affects the microstructural characteristics and water retention kinetics of a new composite made by substituting granite pulver (GP) and fly ash (FA) for cement. Understanding the mechanics of water movement is crucial for comprehending the effectiveness of autogenous curing. Several experiments were conducted to analyze the water mitigation kinetics of super absorbent polymer (SAP) in the hydrating cement paste of autogenous cured self-compacting concrete (GP-ACSSC) mixtures.

View Article and Find Full Text PDF

This study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis.

View Article and Find Full Text PDF

The most valuable components of coal fly ash are cenospheres. Cenospheres are hollow spherical particles produced during the coal-burning processes. As a result of their excellent characteristics, such as high workability, high heat resistance, low bulk density, and high strength, cenospheres can be used in the manufacturing of lightweight cement concrete.

View Article and Find Full Text PDF

Natural fiber composites are becoming an alternate material to synthetic fiber composites, and the use of eggshell bio-filler has been explored in polymer composites as environmental protection. Jute, coir, and sisal fibers were utilized in this research to make composites out of natural fibers. Polymer composites were made using epoxy resin with different amounts of eggshell powder (ESP) as fillers (2%, 4%, 6%, 8%, and 10% of weight).

View Article and Find Full Text PDF

The objective of this paper is to provide a comprehensive study about the performance of concrete using mixed coarse recycled aggregate (MCRA) as an alternative for natural aggregate (NA) at replacement levels of 0, 30, 60, and 100%, which can greatly reduce the environmental pollution by incorporating the construction and demolition wastes in the reproduction of concrete. The focus of this study was to use the raw MCRA that was directly obtained from a recycling plant and not further processed. Initially, MCRA was studied to ascertain if its property meets the recommended Indian standards for natural aggregates.

View Article and Find Full Text PDF

Steel-concrete composite systems are an efficient alternative to mid- and high-rise building structures because of their high strength-to-weight ratio when compared to traditional concrete or steel constructive systems. Nevertheless, composite structural systems are susceptible to damage due to, for example, deficient construction processes, errors in design and detailing, steel corrosion, and the drying shrinkage of concrete. As a consequence, the overall strength of the structure may be significantly decreased.

View Article and Find Full Text PDF

This paper represents a first attempt to study the feasibility of using shear wave (SW) ultrasonic probes as pump-wave sources in concrete microcrack detection and monitoring by Nonlinear Ultrasonic Coda Wave Interferometry (NCWI). The premise behind our study is that the nonlinear elastic hysteretic behavior at microcracks may depend on their orientation with respect to the stationary wave-field induced by the pump-wave source. In this context, the use of a SW probe as a pump-wave source may induce the nonlinear elastic behavior of microcracks oriented in directions not typically detected by a conventional longitudinal pump-wave source.

View Article and Find Full Text PDF