Publications by authors named "Erich Wettwer"

Background: Cardiac accessory β-subunits are part of macromolecular Nav1.5 channel complexes modulating biophysical properties and contributing to arrhythmias. Recent studies demonstrated the structural interaction between β-subunits of Na (Nav1.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (I). Here, I was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues.

View Article and Find Full Text PDF

Background: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions.

Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions.

View Article and Find Full Text PDF

The Na(+)/Ca(2+) exchanger (NCX) plays a major role in myocardial Ca(2+) homoeostasis, but is also considered to contribute to the electrical instability and contractile dysfunction in chronic atrial fibrillation (AF). Here we have investigated the effects of the selective NCX blocker SEA0400 in human right atrial cardiomyocytes from patients in sinus rhythm (SR) and AF in order to obtain electrophysiological evidence for putative antiarrhythmic activity of this new class of drugs. Action potentials were measured in right atrial trabeculae using conventional microelectrodes.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that overexpressing RKIP can enhance heart contractility without causing structural damage, which is typically a concern in heart failure treatments.
  • This increase in contractility is linked to the β1-adrenoceptor while also activating the β2-adrenoceptor, providing a unique mechanism of tolerance.
  • RKIP levels rise in heart failure cases, indicating its potential adaptive role, and transferring the Pebp1 gene shows promise as a new treatment strategy.
View Article and Find Full Text PDF

Background: Selective inhibitors of Kv1.5 channels are being developed for the treatment of atrial fibrillation (AF).

Objectives: The purpose of this study was to investigate the effects of the highly selective Kv1.

View Article and Find Full Text PDF

Slowly inactivating Na+ channels conducting "late" Na+ current (INa,late) contribute to ventricular arrhythmogenesis under pathological conditions. INa,late was also reported to play a role in chronic atrial fibrillation (AF). The objective of this study was to investigate INa,late in human right atrial cardiomyocytes as a putative drug target for treatment of AF.

View Article and Find Full Text PDF

Rationale: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level.

Objective: To test the hypothesis that cardiac myocyte-targeted voltage-sensitive fluorescence protein 2.

View Article and Find Full Text PDF

Ex vivo recorded action potentials (APs) in human right atrial tissue from patients in sinus rhythm (SR) or atrial fibrillation (AF) display a characteristic spike-and-dome or triangular shape, respectively, but variability is huge within each rhythm group. The aim of our study was to apply the machine-learning algorithm ranking instances by maximizing the area under the ROC curve (RIMARC) to a large data set of 480 APs combined with retrospectively collected general clinical parameters and to test whether the rules learned by the RIMARC algorithm can be used for accurately classifying the preoperative rhythm status. APs were included from 221 SR and 158 AF patients.

View Article and Find Full Text PDF

Aims: Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions.

View Article and Find Full Text PDF

Aims: Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria.

Methods And Results: Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue.

View Article and Find Full Text PDF

Voltage activated potassium (Kv) channels are intensely investigated targets within the pharmacological strategies to treat cardiac arrhythmia. For atrial fibrillation (AF) substances inhibiting the ultra rapid outward rectifying Kv current (IKur) and its underlying Kv1.5 channel have been developed.

View Article and Find Full Text PDF

Selective blockers of the Kv1.5 channel have been developed for the treatment of atrial fibrillation (AF), but little is known how these atrial-selective drugs affect human action potentials (APs). Therefore we have investigated the Kv1.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⁺ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle.

View Article and Find Full Text PDF

The species-specific determinants of repolarization are poorly understood. This study compared the contribution of various currents to cardiac repolarization in canine and human ventricle. Conventional microelectrode, whole-cell patch-clamp, molecular biological and mathematical modelling techniques were used.

View Article and Find Full Text PDF

New antiarrhythmic drugs for treatment of atrial fibrillation should ideally be atrial selective in order to avoid pro-arrhythmic effects in the ventricles. Currently recognized atrial selective targets include atrial Nav1.5 channels, Kv1.

View Article and Find Full Text PDF

The human electrophysiological and pharmacological properties of XEN-D0101 were evaluated to assess its usefulness for treating atrial fibrillation (AF). XEN-D0101 inhibited Kv1.5 with an IC50 of 241 nM and is selective over non-target cardiac ion channels (IC50 Kv4.

View Article and Find Full Text PDF

Aims: Vernakalant is a newly developed antiarrhythmic drug against atrial fibrillation (AF). However, its electrophysiological actions on human myocardium are unknown.

Methods And Results: Action potentials (APs) and ion currents were recorded in right atrial trabeculae and cardiomyocytes from patients in sinus rhythm (SR) and chronic AF.

View Article and Find Full Text PDF

The dipeptidyl aminopeptidase-like protein 10 (DPP10) is a type II transmembrane protein homologue to the serine protease DPPIV/CD26 but enzymatically inactive. In the mammalian brain, DPP10 forms a complex with voltage-gated potassium channels of the Kv4 family, regulating their cell surface expression and biophysical properties. DPP10 is a glycoprotein containing eight predicted N-glycosylation sites in the extracellular domain.

View Article and Find Full Text PDF

Introduction: We have recently introduced the use of mammalian cardiac tissue slices for in vitro drug testing purposes. Here we show how this method can be applied for long-term studies in safety pharmacology.

Methods: In freshly prepared cardiac slices from guinea-pig or rat ventricle, extracellular field potentials (FP) and intracellular action potentials (AP) were recorded in response to electrical stimulation using the 4-channel heart slice screening system 'Synchroslice'.

View Article and Find Full Text PDF

Background And Purpose: Action potential (AP) recordings in ex vivo heart preparations constitute an important component of the preclinical cardiac safety assessment according to the ICH S7B guideline. Most AP measurement models are sensitive, predictive and informative but suffer from a low throughput. Here, effects of selected anti-arrhythmics (flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine, verapamil) on field/action potentials (FP/AP) of guinea pig and rabbit ventricular slices are presented and compared with data from established in vitro and in vivo models.

View Article and Find Full Text PDF

Electrophysiological and pharmacological data from the human heart are limited due to the absence of simple but representative experimental model systems of human myocardium. The aim of this study was to establish and characterise adult human myocardial slices from small patients' heart biopsies as a simple, reproducible and relevant preparation suitable for the study of human cardiac tissue at the multicellular level. Vibratome-cut myocardial slices were prepared from left ventricular biopsies obtained from end-stage heart failure patients undergoing heart transplant or ventricular assist device implantation, and from hearts of normal dogs.

View Article and Find Full Text PDF

The aim of this study was to investigate the cellular electrophysiological effects of ranolazine on action potential characteristics. The experiments were carried out in dog and human cardiac preparations using the conventional microelectrode technique. In dog Purkinje fibres ranolazine produced a concentration- and frequency-dependent depression of the maximum rate of depolarization (V(max)) while action potential duration (APD) was shortened.

View Article and Find Full Text PDF

The ultrarapid delayed rectifier channels have attracted considerable interest as targets for 'atrial-selective' antiarrhythmic drugs because they contribute to atrial but not to ventricular repolarization. Thus, I(Kur) channel blockers are expected to prolong selectively the atrial effective refractory period without inducing proarrhythmic effects due to excessive ventricular action potential prolongation. Here we provide an overview of the properties of I(Kur) channels in expression systems and native cardiomyocytes.

View Article and Find Full Text PDF