Publications by authors named "Erich R Mackow"

Unlabelled: Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in ticks resulted in age-dependent POWV lethality 10-20 dpi.

View Article and Find Full Text PDF

Our findings define a novel role for ZIKV-induced TTP expression in regulating IFNβ/IFNλ production in primary hBMECs and Sertoli cells. These cells comprise key physiological barriers subverted by ZIKV to access brain and testicular compartments and serve as reservoirs for persistent replication and dissemination. We demonstrate for the first time that the ARE-binding protein TTP is virally induced and post-transcriptionally regulates IFNβ/IFNλ secretion.

View Article and Find Full Text PDF

Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus.

View Article and Find Full Text PDF

A growing body of evidence demonstrates that endothelial cells (ECs) play a prominent role in immune-enhanced pathology seen in dengue virus (DENV) infection that might contribute to vascular permeability and hemorrhagic manifestations in severe dengue cases. However, it remains a question of whether DENV infection of ECs directly causes permeability or if extra-endothelial factors such as immune cell activation or antibody-dependent enhancement (ADE) are required. In this chapter, we detail the measurement of the transendothelial electrical resistance (TEER), a quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial monolayers and show that DENV infection of ECs does not cause endothelial permeability in vitro.

View Article and Find Full Text PDF

Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining.

View Article and Find Full Text PDF

Andes Virus (ANDV) non-lytically infects pulmonary microvascular endothelial cells (PMECs) causing a severe capillary leak syndrome termed Hantavirus Pulmonary Syndrome (HPS). Basolaterally, PMECs are in contact with pericytes which play critical roles in regulating PMEC permeability and immune cell recruitment. We discovered that ANDV persistently infects primary human vascular pericytes for up to 9 days, and that PMEC monolayer permeability was increased by supernatants from ANDV-infected pericytes.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs.

View Article and Find Full Text PDF

Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability.

View Article and Find Full Text PDF

SARS-CoV-2 causes COVID-19, an acute respiratory distress syndrome (ARDS) characterized by pulmonary edema, viral pneumonia, multiorgan dysfunction, coagulopathy, and inflammation. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) receptors to infect and damage ciliated epithelial cells in the upper respiratory tract. In alveoli, gas exchange occurs across an epithelial-endothelial barrier that ties respiration to endothelial cell (EC) regulation of edema, coagulation, and inflammation.

View Article and Find Full Text PDF

Zika virus (ZIKV) is cytopathic to neurons and persistently infects brain microvascular endothelial cells (hBMECs), which normally restrict viral access to neurons. Despite replicating in the cytoplasm, ZIKV and Dengue virus (DENV) polymerases, NS5 proteins, are predominantly trafficked to the nucleus. We found that a SUMO interaction motif in ZIKV and DENV NS5 proteins directs nuclear localization.

View Article and Find Full Text PDF

Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS) and is the only hantavirus shown to spread person to person and cause a highly lethal HPS-like disease in Syrian hamsters. The unique ability of ANDV N protein to inhibit beta interferon (IFNβ) induction may contribute to its virulence and spread. Here we analyzed IFNβ regulation by ANDV N protein substituted with divergent residues from the nearly identical Maporal virus (MAPV) N protein.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB) to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments.

View Article and Find Full Text PDF

Unlabelled: Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases.

View Article and Find Full Text PDF

Unlabelled: Dengue virus (DENV) replication is inhibited by the prior addition of type I interferon or by RIG-I agonists that elicit RIG-I/MAVS/TBK1/IRF3-dependent protective responses. DENV infection of primary human endothelial cells (ECs) results in a rapid increase in viral titer, which suggests that DENV inhibits replication-restrictive RIG-I/interferon beta (IFN-β) induction pathways within ECs. Our findings demonstrate that DENV serotype 4 (DENV4) nonstructural (NS) proteins NS2A and NS4B inhibited RIG-I-, MDA5-, MAVS-, and TBK1/IKKε-directed IFN-β transcription (>80%) but failed to inhibit IFN-β induction directed by STING or constitutively active IRF3-5D.

View Article and Find Full Text PDF
Article Synopsis
  • The endothelium plays a critical role in maintaining blood vessel integrity by regulating interactions between platelets and immune cells, as well as controlling capillary tone and the adherence of endothelial cells.
  • During viral infections, these normal endothelial functions can be disrupted, leading to serious conditions characterized by severe bleeding or swelling.
  • In some cases, while viral infections in certain hosts may lead to immunotolerance without immediate disease, they can eventually result in delayed human diseases marked by low platelet counts and increased vascular permeability, indicating severe endothelial dysfunction.
View Article and Find Full Text PDF

The endothelial lining of the vasculature performs a vital role in maintaining fluid barrier functions despite balancing nutrient and fluid content of tissues, repairing localized damage, coordinating responses of a plethora of factors, immune cells and platelets through a multitude of endothelial cell surface receptors. Viruses that nonlytically cause lethal hemorrhagic or edematous diseases engage receptors on vascular and lymphatic endothelial cells, altering normal cellular responses that control capillary leakage and fluid clearance functions with lethal consequences. Recent studies indicate that receptors directing dengue virus and hantavirus infection of the endothelium contribute to the dysregulation of normal endothelial cell signaling responses that control capillary permeability and immune responses that contribute to pathogenesis.

View Article and Find Full Text PDF

Unlabelled: Andes virus (ANDV) is the only hantavirus known to spread from person to person and shown to cause highly lethal hantavirus pulmonary syndrome (HPS) in patients and Syrian hamsters. Hantaviruses replicate in human endothelial cells and accomplish this by restricting the early induction of beta interferon (IFN-β)- and IFN-stimulated genes (ISGs). Our studies reveal that the ANDV nucleocapsid (N) protein uniquely inhibits IFN signaling responses directed by cytoplasmic double-stranded RNA (dsRNA) sensors RIG-I and MDA5.

View Article and Find Full Text PDF

Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the early induction of interferon-β (IFNβ) and interferon stimulated genes (ISGs) within human endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within human endothelial cells which self-limits PHV replication and its potential as a human pathogen.

View Article and Find Full Text PDF

Hantaviruses successfully replicate in primary human endothelial cells by restricting the early induction of beta interferon (IFN-β) and interferon-stimulated genes (ISGs). Gn proteins from NY-1V, ANDV, and TULV, but not PHV, harbor elements in their 142-residue cytoplasmic tails (GnTs) that inhibit RIG-I/MAVS/TBK1-TRAF3-directed IFN-β induction. Here, we define GnT interactions and residues required to inhibit TRAF3-TBK1-directed IFN-β induction and IRF3 phosphorylation.

View Article and Find Full Text PDF

Andes virus (ANDV) is a South American hantavirus that causes a highly lethal hantavirus pulmonary syndrome (HPS) characterized by hypoxia, thrombocytopenia, and vascular leakage leading to acute pulmonary edema. ANDV infects human pulmonary microvascular and lymphatic endothelial cells (MECs and LECs, respectively) and nonlytically enhances the permeability of interendothelial cell adherence junctions in response to vascular endothelial growth factor (VEGF). Recent findings also indicate that ANDV causes the formation of giant endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Hantaviruses in the Americas lead to hantavirus pulmonary syndrome (HPS), which causes severe pulmonary edema by infecting endothelial cells without destroying them.
  • These viruses disrupt the normal functions of endothelial cells, affecting fluid regulation in the body's vascular systems, which can lead to significant tissue fluid accumulation.
  • The study highlights potential therapeutic targets in the endothelium to alleviate the severe effects of HPS and discusses the unique responses of lymphatic endothelial cells during infection.
View Article and Find Full Text PDF
Article Synopsis
  • Hantaviruses can cause serious diseases like hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) by infecting human endothelial cells and disrupting their functions.
  • Slit2, a protein that binds to the Robo4 receptor on pulmonary microvascular endothelial cells (PMECs), can inhibit the permeability and disruption of junctions caused by Andes virus (ANDV) and Hantaan virus (HTNV).
  • While Slit2 helps protect PMECs by preventing fluid leakage during ANDV infection, it has no effect on human umbilical vein endothelial cells, indicating a selective interaction based on receptor expression.
View Article and Find Full Text PDF

Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC) barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium.

View Article and Find Full Text PDF

Hantaviruses primarily infect human endothelial cells (ECs) and cause two highly lethal human diseases. Early addition of Type I interferon (IFN) to ECs blocks hantavirus replication and thus for hantaviruses to be pathogenic they need to prevent early interferon induction. PHV replication is blocked in human ECs, but not inhibited in IFN deficient VeroE6 cells and consistent with this, infecting ECs with PHV results in the early induction of IFNβ and an array of interferon stimulated genes (ISGs).

View Article and Find Full Text PDF
Article Synopsis
  • Hantaviruses infect endothelial and lymphatic endothelial cells, causing vascular changes linked to diseases like HFRS and HPS.
  • The study shows that infection by Andes virus (ANDV) and Hantaan virus (HTNV) affects lymphatic cells' permeability and can lead to giant cell formation, primarily through altered signaling pathways involving VEGF-A and VEGFR2.
  • Using VEGF-C and rapamycin may offer therapeutic strategies to mitigate pulmonary edema associated with ANDV infection and potentially improve outcomes in hantavirus disease.
View Article and Find Full Text PDF