Publications by authors named "Erich N Ottem"

Castration of adult male rats causes dendrites of the spinal nucleus of the bulbocavernosus (SNB) to retract. The neurotrophin brain-derived neurotrophic factor (BDNF) is implicated in mediating these androgenic effects on SNB dendrites. We previously found that castration decreases BDNF mRNA in SNB somata and BDNF protein in proximal SNB dendrites, effects not observed in nearby retrodorsolateral (RDLN) motoneurons.

View Article and Find Full Text PDF

Castration of adult male rats causes the dendrites of androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB) to retract. Brain-derived neurotrophic factor (BDNF), via activation of tyrosine receptor kinase B (trkB), has been implicated in mediating androgen effects on SNB dendrites. We used in situ hybridization to demonstrate that SNB motoneurons in gonadally intact adult male rats contain mRNA for both BDNF and trkB.

View Article and Find Full Text PDF

It is generally assumed that the inhibitory neurotransmitter GABA and the stimulatory neurotransmitter glutamate are released from different neurons in adults. However, this tenet has made it difficult to explain how the same afferent signals can cause opposite changes in GABA and glutamate release. Such reciprocal release is a central mechanism in the neural control of many physiological processes including activation of gonadotropin-releasing hormone (GnRH) neurons, the neural signal for ovulation.

View Article and Find Full Text PDF

Estrogen signaling to GnRH neurons is critical for coordinating the preovulatory surge release of LH with follicular maturation. Until recently it was thought that estrogen signaled GnRH neurons only indirectly through numerous afferent systems. This minireview presents new evidence indicating that GnRH neurons are directly regulated by estradiol (E2), primarily through estrogen receptor (ER)-beta, and indirectly through E2-sensitive neurons in the anteroventral periventricular (AVPV) region.

View Article and Find Full Text PDF

Although estradiol (E2) triggers phasic increases in LH-releasing hormone (LHRH) synthesis and release, the neurocircuitry responsible for these changes is unclear. We used an ovariectomized, E2-treated animal model to investigate the possibility that glutamate, through N-methyl-D-aspartate (NMDA) receptors (NMDAR), communicates E2 signals to LHRH neurons. A neuroanatomical analysis of the region containing LHRH neurons revealed that approximately 80% of LHRH neurons in medial, but less than 40% in lateral, nuclei of the preoptic area contained NMDAR1 mRNA.

View Article and Find Full Text PDF