Publications by authors named "Erich Goldbach"

Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aβ generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials.

View Article and Find Full Text PDF

Polo like kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial Parkinson's disease (PD). The kinase activity of this complex protein is increased by pathogenic mutations. Inhibition of LRRK2 kinase activity has therefore emerged as a promising approach for the treatment of PD.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) of a novel, potent and metabolically stable series of benzo [3.2.1] bicyclic sulfonamide-pyrazoles as γ-secretase inhibitors are described.

View Article and Find Full Text PDF

Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays.

View Article and Find Full Text PDF

Context: Hydrophilic, non-aqueous solvents are frequently used to solubilize poorly water soluble compounds for use in ALZET® osmotic pumps used during the discovery and preclinical stages. Though these solvents exhibit the potential to solubilize several poorly soluble compounds, the solubilized compounds are prone to crystallization up on contact with aqueous fluids in vitro and in vivo. Crystallization of a compound can potentially cause pain at the release site, erratic blood levels, and uneven or delayed pharmacokinetic profiles.

View Article and Find Full Text PDF

ELND006 is a novel gamma secretase inhibitor previously under investigation for the oral treatment of Alzheimer's disease. ELND006 shows poor solubility and has moderate to high permeability, suggesting it is a Biopharmaceutics Classification System Class II compound. The poor absolute oral bioavailability of the compound in fasted dogs (F ∼11%) is attributed to poor aqueous solubility.

View Article and Find Full Text PDF

The structure-activity relationship (SAR) of a novel, potent and metabolically stable series of sulfonamide-pyrazoles that attenuate β-amyloid peptide synthesis via γ-secretase inhibition is detailed herein. Sulfonamide-pyrazoles that are efficacious in reducing the cortical Aβx-40 levels in FVB mice via a single PO dose, as well as sulfonamide-pyrazoles that exhibit selectivity for inhibition of APP versus Notch processing by γ-secretase, are highlighted.

View Article and Find Full Text PDF

The SAR of a series of brain penetrant, trisubstituted thiophene based JNK inhibitors with improved pharmacokinetic properties is described. These compounds were designed based on information derived from metabolite identification studies which led to compounds such as 42 with lower clearance, greater brain exposure and longer half life compared to earlier analogs.

View Article and Find Full Text PDF

Herein we describe the structure-activity relationship (SAR) of amino-caprolactam analogs derived from amino-caprolactam benzene sulfonamide 1, highlighting affects on the potency of γ-secretase inhibition, selectivity for the inhibition of APP versus Notch processing by γ-secretase and selected pharmakokinetic properties. Amino-caprolactams that are efficacious in reducing the cortical Aβ(x-40) levels in FVB mice via a single 100 mpk IP dose are highlighted.

View Article and Find Full Text PDF

Introduction: Inhibition of gamma-secretase presents a direct target for lowering Aβ production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy.

View Article and Find Full Text PDF

In this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αβ by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30mpk BID for 2.5days.

View Article and Find Full Text PDF

Significant improvement in metabolic stability on the pyrazolopiperidine scaffold over the original series were achieved and this stability improvement translated in an improved in vivo efficacy.

View Article and Find Full Text PDF

Discovery of a series of pyrazolopiperidine sulfonamide based gamma-secretase inhibitors and its SAR evolution is described. Significant increases in APP potency on the pyrazolopiperidine scaffold over the original N-bicyclic sulfonamide scaffold were achieved and this potency increase translated in an improved in vivo efficacy.

View Article and Find Full Text PDF

Utilizing a pharmacophore hypothesis, previously described gamma-secretase inhibiting HTS hits were evolved into novel tricyclic sulfonamide-pyrazoles, with high in vitro potency, good brain penetration, low metabolic stability, and high clearance.

View Article and Find Full Text PDF

The structural modification of a series of [3.3.1] bicyclic sulfonamide based gamma-secretase inhibitors is described.

View Article and Find Full Text PDF

In this Letter, we report our strategy to design potent and metabolically stable gamma-secretase inhibitors that are efficacious in reducing the cortical Abetax-40 levels in FVB mice via a single PO dose.

View Article and Find Full Text PDF

Potent, small molecule A beta inhibitors have been prepared that incorporate an alanine core bracketed by an N-terminal arylacetyl group and various C-terminal amino alcohols. The compounds exhibit stereospecific inhibition as demonstrated in an in vitro assay.

View Article and Find Full Text PDF