The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of coral in the face of climate change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Genotype-by-environment interactions (GxE) indicate that variation in organismal traits cannot be explained by fixed effects of genetics or site-specific plastic responses alone. For tropical coral reefs experiencing dramatic environmental change, identifying the contributions of genotype, environment, and GxE on coral performance will be vital for both predicting persistence and developing restoration strategies. We quantified the impacts of G, E, and GxE on the morphology and survival of the endangered coral, , through an in situ transplant experiment exposing common garden (nursery)-raised clones of ten genotypes to nine reef sites in the Florida Keys.
View Article and Find Full Text PDFEffective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success.
View Article and Find Full Text PDFThe rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of across six coral nurseries spanning Florida's Coral Reef, USA.
View Article and Find Full Text PDFKnowledge of multi-stressor interactions and the potential for tradeoffs among tolerance traits is essential for developing intervention strategies for the conservation and restoration of reef ecosystems in a changing climate. Thermal extremes and acidification are two major co-occurring stresses predicted to limit the recovery of vital Caribbean reef-building corals. Here, we conducted an aquarium-based experiment to quantify the effects of increased water temperatures and CO individually and in concert on 12 genotypes of the endangered branching coral currently being reared and outplanted for large-scale coral restoration.
View Article and Find Full Text PDFThere are a few baseline reef-systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography.
View Article and Find Full Text PDFDetermining the adaptive potential of foundation species, such as reef-building corals, is urgent as the oceans warm and coral populations decline. Theory predicts that corals may adapt to climate change via selection on standing genetic variation. Yet, corals face not only rising temperatures but also novel diseases.
View Article and Find Full Text PDFAs climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways, it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes.
View Article and Find Full Text PDFThreatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT.
View Article and Find Full Text PDFDisease epizootics are increasing with climatic shifts, yet within each system only a subset of species are identified as the most vulnerable. Understanding ecological immunology patterns as well as environmental influences on immune defenses will provide insight into the persistence of a functional system through adverse conditions. Amongst the most threatened ecosystems are coral reefs, with coral disease epizootics and thermal stress jeopardizing their survival.
View Article and Find Full Text PDFBackground: Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity.
Methodology/principal Findings: Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly.
Background: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin.
Methodology/principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005.