We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot.
View Article and Find Full Text PDFJ Chem Phys
September 2017
We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius r.
View Article and Find Full Text PDFWe review recent theoretical studies on the statistical and dynamical properties of polymers with nontrivial structures in chemical connectivity and those of polymers with a nontrivial topology, such as knotted ring polymers in solution. We call polymers with nontrivial structures in chemical connectivity expressed by graphs "topological polymers". Graphs with no loop have only trivial topology, while graphs with loops such as multiple-rings may have nontrivial topology of spatial graphs as embeddings in three dimensions, e.
View Article and Find Full Text PDFFor various polymers with different structures in chemical connectivity expressed by graphs, we numerically evaluate the mean-square radius of gyration and the hydrodynamic radius systematically through simulation. We call polymers with nontrivial structures in chemical connectivity and those of nontrivial topology of spatial graphs as embeddings in three dimensions topological polymers. We evaluate the two quantities both for ideal and real chain models and show that the ratios of the quantities among different structures in chemical connectivity do not depend on the existence of excluded volume if the topological polymers have only up to trivalent vertices, as far as the polymers investigated.
View Article and Find Full Text PDFWe present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model.
View Article and Find Full Text PDF