Publications by authors named "Erica N Thomas"

Similar to DNA replication, translation of the genetic code by the ribosome is hypothesized to be exceptionally sensitive to small chemical changes to its template mRNA. Here we show that the addition of common alkylating agents to growing cultures of leads to the accumulation of several adducts within RNA, including N(1)-methyladenosine (mA). As expected, the introduction of mA to model mRNAs was found to reduce the rate of peptide bond formation by three orders of magnitude in a well-defined in vitro system.

View Article and Find Full Text PDF

Translation initiation is a major rate-limiting step for protein synthesis. However, recent studies strongly suggest that the efficiency of protein synthesis is additionally regulated by multiple factors that impact the elongation phase. To assess the influence of early elongation on protein synthesis, we employed a library of more than 250,000 reporters combined with in vitro and in vivo protein expression assays.

View Article and Find Full Text PDF

Of the four bases, guanine is the most susceptible to oxidation, which results in the formation of 8-oxoguanine (8-oxoG). In protein-free DNA, 8-oxodG adopts the syn conformation more frequently than the anti one. In the syn conformation, 8-oxodG base pairs with dA.

View Article and Find Full Text PDF

During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA.

View Article and Find Full Text PDF

Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely.

View Article and Find Full Text PDF

Transposable elements (TEs) generate mutations and chromosomal instability when active. To repress TE activity, eukaryotic cells evolved mechanisms to both degrade TE mRNAs into small interfering RNAs (siRNAs) and modify TE chromatin to epigenetically inhibit transcription. Since the populations of small RNAs that participate in TE post-transcriptional regulation differ from those that establish RNA-directed DNA methylation (RdDM), the mechanism through which transcriptionally active TEs transition from post-transcriptional RNAi regulation to chromatin level control has remained unclear.

View Article and Find Full Text PDF

Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs.

View Article and Find Full Text PDF