Publications by authors named "Erica M Rutter"

Plant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in understanding plant adaptation and the genetic architecture underlying complex traits at population scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural networks to segment the leaf body and visible venation of 2,906 leaf images obtained in the field. In contrast to previous methods, our approach (a) does not require experimental or image preprocessing, (b) uses the raw RGB images at full resolution, and (c) requires very few samples for training (e.

View Article and Find Full Text PDF

Reaction-diffusion equations have been used to model a wide range of biological phenomenon related to population spread and proliferation from ecology to cancer. It is commonly assumed that individuals in a population have homogeneous diffusion and growth rates; however, this assumption can be inaccurate when the population is intrinsically divided into many distinct subpopulations that compete with each other. In previous work, the task of inferring the degree of phenotypic heterogeneity between subpopulations from total population density has been performed within a framework that combines parameter distribution estimation with reaction-diffusion models.

View Article and Find Full Text PDF

In response to the COVID-19 pandemic, many higher educational institutions moved their courses on-line in hopes of slowing disease spread. The advent of multiple highly-effective vaccines offers the promise of a return to "normal" in-person operations, but it is not clear if-or for how long-campuses should employ non-pharmaceutical interventions such as requiring masks or capping the size of in-person courses. In this study, we develop and fine-tune a model of COVID-19 spread to UC Merced's student and faculty population.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a fast-growing and deadly brain tumor due to its ability to aggressively invade the nearby brain tissue. A host of mathematical models in the form of reaction-diffusion equations have been formulated and studied in order to assist clinical assessment of GBM growth and its treatment prediction. To better understand the speed of GBM growth and form, we propose a two population reaction-diffusion GBM model based on the 'go or grow' hypothesis.

View Article and Find Full Text PDF

Intra-tumor and inter-patient heterogeneity are two challenges in developing mathematical models for precision medicine diagnostics. Here we review several techniques that can be used to aid the mathematical modeller in inferring and quantifying both sources of heterogeneity from patient data. These techniques include virtual populations, nonlinear mixed effects modeling, non-parametric estimation, Bayesian techniques, and machine learning.

View Article and Find Full Text PDF

Equation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets; however, the performance of these methods in the presence of common challenges from biological data has not been thoroughly explored. We present an equation learning methodology comprised of data denoising, equation learning, model selection and post-processing steps that infers a dynamical systems model from noisy spatiotemporal data.

View Article and Find Full Text PDF

We investigate methods for learning partial differential equation (PDE) models from spatio-temporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate terms from a denoised set of data, including approximated partial derivatives. We analyse the performance in using previous methods to denoise data for the task of discovering the governing system of PDEs.

View Article and Find Full Text PDF

Bladder overactivity and incontinence and dysfunction can be mitigated by electrical stimulation of the pudendal nerve applied at the onset of a bladder contraction. Thus, it is important to predict accurately both bladder pressure and the onset of bladder contractions. We propose a novel method for prediction of bladder pressure using a time-dependent spectrogram representation of external urethral sphincter electromyographic (EUS EMG) activity and a least absolute shrinkage and selection operator regression model.

View Article and Find Full Text PDF

The first few disease generations of an infectious disease outbreak is the most critical phase to implement control interventions. The lack of accurate data and information during the early transmission phase hinders the application of complex compartmental models to make predictions and forecasts about important epidemic quantities. Thus, simpler models are often times better tools to understand the early dynamics of an outbreak particularly in the context of limited data.

View Article and Find Full Text PDF

We continue our efforts in modeling Daphnia magna, a species of water flea, by proposing a continuously structured population model incorporating density-dependent and density-independent fecundity and mortality rates. We collected new individual-level data to parameterize the individual demographics relating food availability and individual daphnid growth. Our model is fit to experimental data using the generalized least-squares framework, and we use cross-validation and Akaike Information Criteria to select hyper-parameters.

View Article and Find Full Text PDF

Cerebral autoregulation refers to the brain's regulation mechanisms that aim to maintain the cerebral blood flow approximately constant. It is often assessed by the autoregulation index (ARI). ARI uses arterial blood pressure and cerebral blood flow velocity time series to produce a ten-scale index of autoregulation performance (0 denoting the absence of and 9 the strongest autoregulation).

View Article and Find Full Text PDF

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm to 62 mm, even though mice were inoculated from the same tumor cell line under carefully controlled conditions.

View Article and Find Full Text PDF

Glioblastoma multiforme is an aggressive brain cancer that is extremely fatal. It is characterized by both proliferation and large amounts of migration, which contributes to the difficulty of treatment. Previous models of this type of cancer growth often include two separate equations to model proliferation or migration.

View Article and Find Full Text PDF

Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use.

View Article and Find Full Text PDF