Publications by authors named "Erica M Comber"

A new, lightweight (2.3 kg), ambulatory pulmonary assist system (PAS) underwent preliminary evaluation in ambulatory sheep. The PAS was purposefully designed for long-term extracorporeal respiratory support for chronic lung disease and utilizes a novel, small (0.

View Article and Find Full Text PDF

One of the largest issues facing the field of tissue engineering is scaling due to tissue necrosis as a result of a lack of vascularization. We have developed an accessible method for generating large scale vascular networks of arbitrary geometries through the self-assembly of endothelial cells in a collagen gel, similar to vasculogenesis that occurs in the developing embryo. This system can be applied to a wide range of collagen concentrations and seeding densities, resulting in networks of varying phenotypes, lending itself to the recapitulation of vascular networks that mimic those found across different tissues.

View Article and Find Full Text PDF

Chronic lung disease is the 4th leading cause of death in the United States. Due to a shortage of donor lungs, alternative approaches to support failing, native lungs have been attempted, including mechanical ventilation and various forms of artificial lungs. However, each of these support methods causes significant complications when used for longer than a few days and are thus not capable of long-term support.

View Article and Find Full Text PDF

One of the largest challenges facing the field of tissue engineering is the incorporation of a functional vasculature, allowing effective nourishment of graft tissue beyond diffusion length scales. Here, we demonstrate a methodology for inducing the robust self-assembly of endothelial cells into stable three-dimensional perfusable networks on millimeter and centimeter length scales. Utilizing broadly accessible cell strains and reagents, we have rigorously tested a state space of cell densities (0.

View Article and Find Full Text PDF