Publications by authors named "Erica Leder"

Sperm morphology varies considerably among species. Sperm traits may contribute to speciation if they diverge fast in allopatry and cause conspecific sperm precedence upon secondary contact. However, their role in driving prezygotic isolation has been poorly investigated.

View Article and Find Full Text PDF

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage.

View Article and Find Full Text PDF

Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails ( spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosomal inversions in zebra finches affect various traits, particularly sperm characteristics like midpiece and flagellum length, due to a notable region on the Z chromosome.
  • A study of young males' testis and liver transcriptomes revealed 794 differentially expressed genes, mainly on the Z chromosome, with enrichment for sperm-related functions.
  • There were distinct patterns of gene expression between inversion karyotypes, indicating that these chromosomal changes can lead to diverse phenotypic outcomes based on tissue type and specific genes.
View Article and Find Full Text PDF

When populations become geographically isolated, they begin to diverge in various traits and at variable rates. The dynamics of such trait divergences are relevant for understanding evolutionary processes such as local adaptation and speciation. Here we examine divergences in sperm and body structures in a polygynandrous songbird, the alpine accentor (Prunella collaris) between two allopatric high-altitude populations, in Morocco and Spain.

View Article and Find Full Text PDF

Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway.

View Article and Find Full Text PDF

Species invasions are a global problem of increasing concern, especially in highly connected aquatic environments. Despite this, salinity conditions can pose physiological barriers to their spread, and understanding them is important for management. In Scandinavia's largest cargo port, the invasive round goby () is established across a steep salinity gradient.

View Article and Find Full Text PDF

In species with alternative reproductive tactics, there is much empirical support that parasitically spawning males have larger testes and greater sperm numbers as an evolved response to a higher degree of sperm competition, but support for higher sperm performance (motility, longevity and speed) by such males is inconsistent. We used the sand goby () to test whether sperm performance differed between breeding-coloured males (small testes, large mucus-filled sperm-duct glands; build nests lined with sperm-containing mucus, provide care) and parasitic sneaker-morph males (no breeding colouration, large testes, rudimentary sperm-duct glands; no nest, no care). We compared motility (per cent motile sperm), velocity, longevity of sperm, gene expression of testes and sperm morphometrics between the two morphs.

View Article and Find Full Text PDF

The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences.

View Article and Find Full Text PDF

For externally fertilising organisms in the aquatic environment, the abiotic fertilisation medium can be a strong selecting force. Among bony fishes, sperm are adapted to function in a narrow salinity range. A notable exception is the family Gobiidae, where several species reproduce across a wide salinity range.

View Article and Find Full Text PDF

In externally fertilizing species, the gametes of both males and females are exposed to the influences of the environment into which they are released. Sperm are sensitive to abiotic factors such as salinity, but they are also affected by biotic factors such as sperm competition. In this study, the authors compared the performance of sperm of three goby species, the painted goby, Pomatoschistus pictus, the two-spotted goby, Pomatoschistus flavescens, and the sand goby, Pomatoschistus minutus.

View Article and Find Full Text PDF

Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling () embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds.

View Article and Find Full Text PDF

Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm.

View Article and Find Full Text PDF

In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiomyopathy syndrome (CMS), caused by piscine myocarditis virus, significantly impacts the Norwegian Atlantic salmon industry, and this study investigated three populations from the Mowi breeding program for genetic resistance.
  • The study estimated heritability and genetic correlation between populations, revealing moderate genetic correlation (0.51-0.61) and genomic heritability rates from 0.12 to 0.46, with the highest estimate from a controlled challenge test.
  • Two chromosomal regions linked to resistance were identified, along with four relevant genes, indicating potential for using these genetic markers to enhance CMS resistance through selection strategies.
View Article and Find Full Text PDF

The climate-change-driven increase in temperature is occurring rapidly and decreasing the predictability of seasonal rhythms at high latitudes. It is therefore urgent to understand how a change in the relationship between photoperiod and temperature can affect ectotherms in these environments. We tested whether temperature affects daily rhythms of transcription in a cold-adapted salmonid using high-throughput RNA sequencing.

View Article and Find Full Text PDF

Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence.

View Article and Find Full Text PDF

The distributions of species are not only determined by where they can survive - they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats.

View Article and Find Full Text PDF

Gene expression changes potentially play an important role in adaptive evolution under human-induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries-induced evolution, and thus, the relevant underlying molecular-level effects remain elusive.

View Article and Find Full Text PDF

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution.

View Article and Find Full Text PDF

Phthalate esters are plasticizers frequently found in wastewater effluents. Previous studies on phthalates have reported anti-androgenic activity in mammals, causing concerns of their potential effects on the reproduction of aquatic organisms. Another group of environmental endocrine disrupters, steroidal estrogens, are known to inhibit steroid biosynthesis in the gonads, but the effects related to spermatogenesis are not well understood in fish.

View Article and Find Full Text PDF

In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes.

View Article and Find Full Text PDF

Understanding how populations adapt to changing environmental conditions is a long-standing theme in evolutionary biology. Gene expression changes have been recognized as an important driver of local adaptation, but relatively little is known regarding the direction of change and in particular, about the interplay between plastic and evolutionary gene expression. We have previously shown that the gene expression profiles of European grayling (Thymallus thymallus) populations inhabiting different thermal environments include both plastic and evolutionary components.

View Article and Find Full Text PDF

The loss of Y-linked genes during sex chromosome evolution creates a potentially deleterious low gene dosage in males. Recent studies have reported different strategies of dosage compensation. Unfortunately, most of these studies investigated taxa with comparatively old sex chromosome systems, which may limit insights into the evolution of dosage compensation and thus into the causes of different compensation strategies.

View Article and Find Full Text PDF

Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant "genetical genomics" approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level.

View Article and Find Full Text PDF