NK-cell killing requires both the expression of activating receptor ligands and low MHC class I expression by target cells. Here we demonstrate that the expression of any of the murine ligands for the NK-cell activating receptor NKG2D results in a concomitant reduction in MHC class I expression. We show this both in tumor cell lines and in vivo.
View Article and Find Full Text PDFThe mechanisms by which cytotoxic T lymphocytes (CTLs) enter and are retained in nonlymphoid tissue are not well characterized. With a transgenic mouse expressing the NKG2D ligand retinoic acid early transcript 1ε (RAE1ε) in β-islet cells of the pancreas, we found that RAE1 expression was sufficient to induce the recruitment of adoptively transferred CTLs to islets. This was dependent on NKG2D expression by the CTLs and independent of antigen recognition.
View Article and Find Full Text PDFImmunological synapse formation between T cells and target cells can affect the functional outcome of TCR ligation by a given MHC-peptide complex. Although synapse formation is usually induced by TCR signaling, it is not clear whether other factors can affect the efficiency of synapse formation. Here, we tested whether cytokines could influence synapse formation between murine CTLs and target cells.
View Article and Find Full Text PDFMultiple studies have demonstrated that the NK cell activating receptor NKG2D can function as a costimulatory receptor for both mouse and human CD8+ T cells. However, it has recently been suggested that stimulation through NKG2D is insufficient for costimulation of CD8+ T cells. To aid in the delineation of NKG2D function in CTL responses, we investigated whether stimulation of NKG2D by the natural ligand RAE1epsilon was able to costimulate effector functions of a murine CTL line generated from DUC18 TCR transgenic mice.
View Article and Find Full Text PDF