Publications by authors named "Erica Hofer"

Bone metastasis is an incurable complication of breast cancer affecting 70-80 % of advanced patients. It is a multistep process that includes tumour cell mobilisation, intravasation, survival in the circulation, extravasation, migration and proliferation in the bone marrow/bone. Although novel findings demonstrate the bone marrow microenvironment significance in bone metastatic progression, a majority of studies have focused on end-stage disease and little is known about how the pre-metastatic niche arises in the bone marrow/bone tissues.

View Article and Find Full Text PDF

Tumour cells can find in bone marrow (BM) a niche rich in growth factors and cytokines that promote their self-renewal, proliferation and survival. In turn, tumour cells affect the homeostasis of the BM and bone, as well as the balance among haematopoiesis, osteogenesis, osteoclastogenesis and bone-resorption. As a result, growth and survival factors normally sequestered in the bone matrix are released, favouring tumour development.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced lung and breast cancer patients have reduced numbers of bone marrow colony-forming unit fibroblasts (CFU-Fs), affecting stem cell proliferation and differentiation due to their unique bone marrow microenvironment.
  • Conditioned media from these cancer patients' CFU-F-derived stromal cells also decrease the colony-forming efficiency of healthy individuals' CFU-Fs, leading to larger stromal cells that deviate from the normal morphology.
  • Increased levels of GM-CSF, along with low bFGF and Dkk-1 concentrations in patients' conditioned media, contribute to the impaired function and maturation of mesenchymal stem cells (MSCs), which remain largely unresponsive in standard growth conditions.
View Article and Find Full Text PDF

Bone marrow (BM)-derived adult mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into different cell lines. This makes them a likely source for application in tissue repair therapies. Here, we report evidence indicating that, both in vivo and in vitro, IMT504, the prototype of the PyNTTTTGT class of immunostimulatory oligonucleotides, significantly increases the number of fibroblast colony-forming units (CFU-Fs) that originate MSCs.

View Article and Find Full Text PDF

Previously, we reported a deficient cloning capacity of the bone marrow (BM) mesenchymal stem cells to give colony-forming unit fibroblast (CFU-F) and an inefficient confluence capacity of BM stromal cells in advanced untreated lung cancer patients (LCP) and breast cancer patients (BCP). Moreover, a decreased level of bFGF at day 7 in the conditioned media from BM CFU-F cultures was found in both cancer groups when compared to the normal range. The current study was specially undertaken, to evaluate the percentage of subconfluent fibroblasts expressing receptors (R) of interleukin-1 (IL-1), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF-beta), epidermal growth factor (EGF), and the proteins c-Fos and c-Myc in BM primary cultures from untreated LCP and BCP.

View Article and Find Full Text PDF

Background: Bone marrow (BM) is an important tissue in the generation of immunocompetent and peripheral blood cells. The precursors of hematopoietic cells in BM undergo continuous proliferation and differentiation and are highly vulnerable to acute and chronic oxidative stress. Little is known about the oxidant and antioxidant status in the BM of untreated patients with nonhematologic tumors.

View Article and Find Full Text PDF