Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other).
View Article and Find Full Text PDFOver 500 Free Amino Acid (FAA) and corresponding Total Hydrolysed Amino Acid (THAA) analyses were completed from eight independently-dated, multi-century coral cores of massive sp. colonies. This dataset allows us to re-evaluate the application of amino acid racemization (AAR) for dating late Holocene coral material, 20 years after Goodfriend et al.
View Article and Find Full Text PDFThe effect of European settlement on water quality in the Great Barrier Reef of Australia is a long-standing and controversial issue. Erosion and sediment transport in river catchments in this region have increased substantially since European settlement, but the magnitude of these changes remains uncertain. Here we report analyses of Ba/Ca ratios in long-lived Porites coral from Havannah Reef--a site on the inner Great Barrier Reef that is influenced by flood plumes from the Burdekin river--to establish a record of sediment fluxes from about 1750 to 1998.
View Article and Find Full Text PDFA 420-year history of strontium/calcium, uranium/calcium, and oxygen isotope ratios in eight coral cores from the Great Barrier Reef, Australia, indicates that sea surface temperature and salinity were higher in the 18th century than in the 20th century. An abrupt freshening after 1870 occurred simultaneously throughout the southwestern Pacific, coinciding with cooling tropical temperatures. Higher salinities between 1565 and 1870 are best explained by a combination of advection and wind-induced evaporation resulting from a strong latitudinal temperature gradient and intensified circulation.
View Article and Find Full Text PDF