Publications by authors named "Erica H Hinton"

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG).

View Article and Find Full Text PDF

Background: Roughly 800,000 people experience a stroke every year in the United States, and about 30% of people require walking assistance (walker, cane, etc.) after a stroke. Gait training on a treadmill is a common rehabilitation activity for individuals post-stroke and handrails are typically used to assist with walking during this training, however individual interaction with these handrails are not usually considered and quantitatively reported.

View Article and Find Full Text PDF

Treadmill-based gait rehabilitation protocols have shown that real-time visual biofeedback can promote learning of improved gait biomechanics, but previous feedback work has largely involved treadmill walking and not overground gait. The objective of this study was to determine the short-term response to hip extension visual biofeedback, with individuals post-stroke, during unconstrained overground walking. Individuals post-stroke typically have a decreased paretic propulsion and walking speed, but increasing hip extension angle may enable the paretic leg to better translate force anteriorly during push-off.

View Article and Find Full Text PDF

Background: Visual biofeedback has shown success in improving gait mechanics in individuals post-stroke but has typically been restricted to use on a treadmill or a short walkway. Using real-time visual biofeedback during overground walking could increase the ease of clinical translation of this method. The objective was to investigate the reliability of a real-time hip extension feedback device during unconstrained, overground walking.

View Article and Find Full Text PDF

Background: Neurotypical individuals alter their ankle joint quasi-stiffness in response to changing walking speed; however, for individuals post-stroke, the ability to alter their ankle quasi-stiffness is unknown. Individuals post-stroke commonly have weak plantarflexor muscles, which may limit their ability to alter ankle quasi-stiffness. The objective was to investigate the relationship between ankle quasi-stiffness and propulsion, at two walking speeds.

View Article and Find Full Text PDF