Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices and .
View Article and Find Full Text PDFWe developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1.
View Article and Find Full Text PDFElectrophysiological oscillations in the brain have been shown to occur as multicycle events, with onset and offset dependent on behavioral and cognitive state. To provide a baseline for state-related and task-related events, we quantified oscillation features in resting-state recordings. We developed an open-source wavelet-based tool to detect and characterize such oscillation events (OEvents) and exemplify the use of this tool in both simulations and two invasively-recorded electrophysiology datasets: one from human, and one from nonhuman primate (NHP) auditory system.
View Article and Find Full Text PDFProgressive neurovasculopathy in children with sickle cell disease (SCD) results in decreased cognitive function and quality of life (QoL). Hematopoietic cell transplantation (HCT) is believed to halt progression of neurovasculopathy. Quantitative analysis of T2-weighted fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) for white matter hyperintensity (WMH) burden provides a meaningful estimate of small vessel cerebrovascular disease.
View Article and Find Full Text PDFNeurobiol Aging
December 2016
Low episodic memory performance characterizes elderly subjects at increased risk for Alzheimer's disease (AD) and may reflect neuronal dysfunction within the posterior cingulate cortex and precuneus (PCP) region. To investigate a potential association between cerebral neurometabolism and low episodic memory in the absence of cognitive impairment, tissue-specific magnetic resonance spectroscopic imaging at ultrahigh field strength of 7 Tesla was used to investigate the PCP region in a healthy elderly study population (n = 30, age 70 ± 5.7 years, Mini-Mental State Examination 29.
View Article and Find Full Text PDFCognitive impairment in heart failure (HF) is believed to in part stem from structural brain alterations, including shrinkage of subcortical regions. Fortunately, neurocognitive dysfunction in HF can be mitigated by physical activity (PA), though mechanisms for this phenomenon are unclear. PA is protective against age-related cognitive decline that may involve improved structural integrity to brain regions sensitive to aging (e.
View Article and Find Full Text PDFCognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.
View Article and Find Full Text PDFAnimal evidence suggests that a brain network involving the medial and rostral ventral prefrontal cortex (PFC) is central for threat response and arousal and a network involving the lateral and caudal PFC plays an important role in reward learning and behavioral control. In this study, we contrasted the neuropsychiatric effects of degeneration of the medial versus lateral PFC in 43 patients with Frontotemporal dementia (FTD) and 11 patients with Corticobasal Syndrome (CBS) using MRI, the Neuropsychiatric Inventory (NPI), and the Sorting, Tower, Twenty Questions, and Fluency tests of the Delis-Kaplan Executive Function System (D-KEFS). Deviations in MRI grey matter volume from 86 age-matched healthy control subjects were determined for the patients using FreeSurfer.
View Article and Find Full Text PDFUnawareness of memory loss is a challenging characteristic of Alzheimer's disease (AD) and other age-related neurodegenerative conditions at their earliest stages, adversely affecting important outcomes such as patient decision making and safety. The basis of this metacognitive disturbance has been elusive; however it is almost certainly determined in part by compromise to brain regions critical for self-assessment. The subjectivity of traditional measurements of self-awareness in dementia has likely limited the rigor with which its neuroanatomic correlates can be established.
View Article and Find Full Text PDFRecent work suggests that analysis of the cortical thickness in key brain regions can be used to identify individuals at greatest risk for development of Alzheimer's disease (AD). It is unclear to what extent this "signature" is a biological marker of normal memory function - the primary cognitive domain affected by AD. We examined the relationship between the AD signature biomarker and memory functioning in a group of neurologically healthy young and older adults.
View Article and Find Full Text PDFBackground: Structural magnetic resonance imaging (MRI) provides key biomarkers to predict onset and track progression of Alzheimer's disease (AD). However, most published reports of relationships between MRI variables and cognition in older adults include racially, ethnically, and socioeconomically homogenous samples. Racial/ethnic differences in MRI variables and cognitive performance, as well as health, socioeconomic status and psychological factors, raise the possibility that brain-behavior relationships may be stronger or weaker in different groups.
View Article and Find Full Text PDFBackground: Heart failure (HF) patients are at risk for structural brain changes due to cerebral hypoperfusion. Past work shows obesity is linked with reduced cerebral blood flow and associated with brain atrophy in healthy individuals, although its effects on the brain in HF are unclear. This study examined the association among body mass index (BMI), cerebral perfusion, and brain volume in HF patients.
View Article and Find Full Text PDFBackground: Heart failure patients require assistance with instrumental activities of daily living in part because of the high rates of cognitive impairment in this population. Structural brain insult (eg, reduced gray matter volume) is theorized to underlie cognitive dysfunction in heart failure, although no study has examined the association among gray matter, cognition, and instrumental activities of daily living in heart failure.
Objectives: The aim of this study was to investigate the associations among gray matter volume, cognitive function, and functional ability in heart failure.
Accumulating evidence implicates small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on T2-weighted magnetic resonance imaging, in the pathogenesis and diagnosis of Alzheimer's disease (AD). Cross-sectional volumetric measures of WMH, particularly in the parietal lobes, are associated with increased risk of AD. In the present study, we sought to determine whether the longitudinal regional progression of WMH predicts incident AD above-and-beyond traditional radiological markers of neurodegeneration (i.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown.
View Article and Find Full Text PDFPurpose/aim: Heart failure patients often require assistance with activities of daily living, including driving. Recent work shows heart failure patients commit more errors on a simulated driving task relative to controls and cognitive dysfunction contributed to these errors. We sought to extend these findings by examining whether structural magnetic resonance imaging indices correlate with driving independence and performance in heart failure.
View Article and Find Full Text PDFBackground: Reduced systemic perfusion and comorbid medical conditions are key contributors to adverse brain changes in heart failure (HF). Hypertension, the most common co-occurring condition in HF, accelerates brain atrophy in aging populations. However, the independent and interactive effects of blood pressure and systemic perfusion on brain structure in HF have yet to be investigated.
View Article and Find Full Text PDFObjective: Physical fitness is an important correlate of structural and functional integrity of the brain in healthy adults. In heart failure (HF) patients, poor physical fitness may contribute to cognitive dysfunction and we examined the unique contribution of physical fitness to brain structural integrity among patients with HF.
Methods: Sixty-nine HF patients performed the Modified Mini Mental State examination (3MS) and underwent brain magnetic resonance imaging.
Cognitive impairment is common in heart failure (HF) and believed to be the result of cerebral hypoperfusion and subsequent brain changes including white matter hyperintensities (WMHs). The current study examined the association between cerebral blood flow and WMHs in patients with HF and the relationship between WMHs and cognitive impairment. Sixty-nine patients with HF completed the Mini-Mental State Examination (MMSE) and underwent echocardiography, transcranial Doppler sonography for cerebral blood flow velocity of the middle cerebral artery, and brain magnetic resonance imaging.
View Article and Find Full Text PDFImportance: Current hypothetical models emphasize the importance of β-amyloid in Alzheimer disease (AD) pathogenesis, although amyloid alone is not sufficient to account for the dementia syndrome. The impact of small-vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging scans, may be a key factor that contributes independently to AD presentation.
Objective: To determine the impact of WMHs and Pittsburgh Compound B (PIB) positron-emission tomography-derived amyloid positivity on the clinical expression of AD.
J Clin Exp Neuropsychol
August 2013
Objective: Heart failure (HF) is associated with structural brain abnormalities, including atrophy in multiple brain regions. Type 2 diabetes mellitus (T2DM) is a prevalent comorbid condition in HF and is associated with abnormalities on neuroimaging in other medical and elderly samples. The current study examined whether comorbid T2DM exacerbates brain atrophy in older adults with HF.
View Article and Find Full Text PDFAlthough the huntingtin gene is expressed in brain throughout life, phenotypically Huntington's disease (HD) begins only in midlife and affects specific brain regions. Here, to investigate regional vulnerability in the disease, we used functional magnetic resonance imaging (fMRI) to translationally link studies in patients with a mouse model of disease. Using fMRI, we mapped cerebral blood volume (CBV) in three groups: HD patients, symptom-free carriers of the huntingtin genetic mutation, and age-matched controls.
View Article and Find Full Text PDFSocioeconomic disparities-and particularly differences in educational attainment-are associated with remarkable differences in cognition and behavior across the life-span. Decreased educational attainment has been linked to increased exposure to life stressors, which in turn have been associated with structural differences in the hippocampus and the amygdala. However, the degree to which educational attainment is directly associated with anatomical differences in these structures remains unclear.
View Article and Find Full Text PDFFew studies have applied multiple imaging modalities to examine cognitive correlates of white matter. We examined the utility of T2-weighted magnetic resonance imaging (MRI) -derived white matter hyperintensities (WMH) and diffusion tensor imaging-derived fractional anisotropy (FA) to predict cognitive functioning among older adults. Quantitative MRI and neuropsychological evaluations were performed in 112 older participants from an ongoing study of the genetics of Alzheimer's disease (AD) in African Americans.
View Article and Find Full Text PDF