Pleuromamma (Giesbrecht, 1898) is a cosmopolitan genus of metridinid copepods, with species that perform remarkable diel vertical migrations (DVM) and emit a bioluminescent secretion when disturbed that varies both spectrally and kinetically. Copepod bioluminescence is autogenic and uses luciferase enzymes that catalyze a luciferin, coelenterazine, to produce light. Pleuromamma possess naupliar eyes, relatively simple photosensitive structures used for many visually-guided behaviors.
View Article and Find Full Text PDFThe atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions.
View Article and Find Full Text PDFPteropods, a group of holoplanktonic gastropods, are regarded as bioindicators of the effects of ocean acidification on open ocean ecosystems, because their thin aragonitic shells are susceptible to dissolution. While there have been recent efforts to address their capacity for physiological acclimation, it is also important to gain predictive understanding of their ability to adapt to future ocean conditions. However, little is known about the levels of genetic variation and large-scale population structuring of pteropods, key characteristics enabling local adaptation.
View Article and Find Full Text PDFPteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle.
View Article and Find Full Text PDFBackground: The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Ma, atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown.
View Article and Find Full Text PDFThe deep seafloor serves as a reservoir of biodiversity in the global ocean, with >80% of invertebrates at abyssal depths still undescribed. These diverse and remote deep-sea communities are critically under-sampled and increasingly threatened by anthropogenic impacts, including future polymetallic nodule mining. Using a multigene environmental DNA (eDNA) metabarcoding approach, we characterized metazoan communities sampled from sediments, polymetallic nodules and seawater in the western Clarion Clipperton Zone (CCZ) to test the hypotheses that deep seamounts (a) are species richness hotspots in the abyss, (b) have structurally distinct communities in comparison to other deep-sea habitats, and (c) that seafloor particulate organic carbon (POC) flux and polymetallic nodule density are positively correlated with metazoan diversity.
View Article and Find Full Text PDFAcross boundary currents, zooplankton are subject to strong oceanographic gradients and hence strong selective pressures. How such gradients interact with the speciation process of pelagic organisms is still poorly understood in the open ocean realm. Here we report on genetic diversity within the pelagic copepod Pleuromamma abdominalis in the poorly known Southeast Pacific region, with samples spanning an ocean gradient from coastal upwelling to the oligotrophic South Pacific Subtropical Gyre.
View Article and Find Full Text PDFAtlantid heteropods are a family of holoplanktonic marine gastropods that occur primarily in tropical and subtropical latitudes. Atlantids bear a delicate aragonitic shell (<14 mm) and live in the upper ocean, where ocean acidification and ocean warming have a pronounced effect. Therefore, atlantids are likely to be sensitive to these ocean changes.
View Article and Find Full Text PDFAbyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific).
View Article and Find Full Text PDFIn subtropical oceans phytoplankton carbon: phosphorus (C : P) ratios are high, and these ratios are predicted to increase further with rising ocean temperatures and stratification. Prey stoichiometry may pose a problem for copepod zooplankton nauplii, which have high phosphorus demands due to rapid growth. We hypothesised that nauplii meet this demand by consuming bacteria.
View Article and Find Full Text PDFThe atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying on a small (<14 mm), delicate aragonite shell and living in the upper ocean means that, in common with pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and widespread distributions indicate that the family is more diverse than the 23 currently known species.
View Article and Find Full Text PDFPseudoliparis swirei sp. nov. is described from 37 individuals collected in the Mariana Trench at depths 6898-7966 m.
View Article and Find Full Text PDFAlthough metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies.
View Article and Find Full Text PDFAlthough stochasticity in oceanographic conditions is known to be an important driver of temporal genetic change in many marine species, little is known about whether genetically distinct plankton populations can persist in open ocean habitats. A prior study demonstrated significant population genetic structure among oceanic gyres in the mesopelagic copepod Haloptilus longicornis in both the Atlantic and Pacific Oceans, and we hypothesized that populations within each gyre represent distinct gene pools that persist over time. We tested this expectation through basin-scale sampling across the Atlantic Ocean in 2010 and 2012.
View Article and Find Full Text PDFBackground: Shelled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic variation in pteropods belonging to the genus Cuvierina in relation to their biogeographic distribution across the world's oceans.
View Article and Find Full Text PDFZooplanktonic taxa have a greater number of distinct populations and species than might be predicted based on their large population sizes and open-ocean habitat, which lacks obvious physical barriers to dispersal and gene flow. To gain insight into the evolutionary mechanisms driving genetic diversification in zooplankton, we developed eight microsatellite markers to examine the population structure of an abundant, globally distributed mesopelagic copepod, Haloptilus longicornis, at 18 sample sites across the Atlantic and Pacific Oceans (n = 761). When comparing our microsatellite results with those of a prior study that used a mtDNA marker (mtCOII, n = 1059, 43 sample sites), we unexpectedly found evidence for the presence of a cryptic species pair.
View Article and Find Full Text PDFOpen ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change.
View Article and Find Full Text PDFAlthough holoplankton are ocean drifters and exhibit high dispersal potential, a number of studies on single species are finding highly divergent genetic clades. These cryptic species complexes are important to discover and describe, as identification of common marine species is fundamental to understanding ecosystem dynamics. Here we investigate the global diversity within Pleuromamma piseki and P.
View Article and Find Full Text PDFIntegr Comp Biol
October 2011
Although a number of recent studies of marine holoplankton have reported significant genetic structure among populations, little is currently known about the biological and oceanographic processes that influence population connectivity in oceanic plankton. In order to examine how depth preferences influence dispersal in oceanic plankton, I characterized the genetic structure of a copepod with diel vertical migration (DVM) (Pleuromamma xiphias), throughout its global distribution, and compared these results to those expected given the interaction of this species' habitat depth with ocean circulation and bathymetry. Mitochondrial COI sequences from 651 individuals from 28 sites in the Indian, Pacific, and Atlantic Oceans revealed highly significant genetic differentiation both within and among ocean basins.
View Article and Find Full Text PDFBackground: Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations.
View Article and Find Full Text PDFSpecies discovery through large-scale sampling of mitochondrial diversity, as advocated under DNA barcoding, has been widely criticized. Two of the primary weaknesses of this approach, the use of a single gene marker for species delineation and the possible co-amplification of nuclear pseudogenes, can be circumvented through incorporation of multiple data sources. Here I show that for taxonomic groups with poorly characterized systematics, large-scale genetic screening using a mitochondrial DNA marker can be a very effective approach to species discovery.
View Article and Find Full Text PDFAlthough theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently distinguished sympatric, circumglobal sister species, Eucalanus hyalinus and Eucalanus spinifer, for population genetic structure throughout their global biogeographic ranges. Here I show that oceanic zooplankton species can be highly genetically structured on macrogeographic spatial scales, despite experiencing extensive gene flow within features of the large-scale ocean circulation.
View Article and Find Full Text PDF