Background: The recalcitrance of cellulosic biomass is widely recognized as a key barrier to cost-effective biological processing to fuels and chemicals, but the relative impacts of physical, chemical and genetic interventions to improve biomass processing singly and in combination have yet to be evaluated systematically. Solubilization of plant cell walls can be enhanced by non-biological augmentation including physical cotreatment and thermochemical pretreatment, the choice of biocatalyst, the choice of plant feedstock, genetic engineering of plants, and choosing feedstocks that are less recalcitrant natural variants. A two-tiered combinatoric investigation of lignocellulosic biomass deconstruction was undertaken with three biocatalysts (, Novozymes Cellic Ctec2 and Htec2), three transgenic switchgrass plant lines (COMT, MYB4, GAUT4) and their respective nontransgenic controls, two natural variants, and augmentation of biological attack using either mechanical cotreatment or cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment.
View Article and Find Full Text PDF