Background: Equitable representation of members from historically marginalized groups is important in clinical trials, which inform standards of care. The goal of this study was to characterize the demographics and proportional subgroup reporting and representation of participants enrolled in randomized controlled trials (RCTs) of antibacterials used to treat Staphylococcus aureus infections.
Methods: We examined randomized controlled registrational and strategy trials published from 2000 to 2021 to determine the sex, race, and ethnicity of participants.
Antimicrob Agents Chemother
March 2022
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas.
View Article and Find Full Text PDFDendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood.
View Article and Find Full Text PDFsuccessfully subverts the host immune response to promote disease progression. In addition to its known intracellular niche in macrophages, interferes with the functions of dendritic cells (DCs), which are the primary antigen-presenting cells of the immune system. We previously showed that dampens proinflammatory responses and impairs DC functions through the cell envelope-associated serine protease Hip1.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function.
View Article and Find Full Text PDF