Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location.
View Article and Find Full Text PDFImitation is a significant daily activity involved in social interaction and motor learning. Imitation has been theorized to be performed in at least two ways. In posture-based imitation, individuals reproduce how the body should look and feel, and are sensitive to the relative positioning of body parts.
View Article and Find Full Text PDFSpatial experience in childhood is a factor in the development of spatial abilities. In this study, we assessed whether American and Faroese participants' (N = 246, M = 19.31 years, 151 females) early spatial experience and adult spatial outcomes differed by gender and culture, and if early experience was related to adult performance and behavior.
View Article and Find Full Text PDFImitation is an important daily activity involved in social interactions, motor learning, and is commonly used for rehabilitation after stroke. Moreover, deficits in imitation of novel movements commonly occur after left hemisphere stroke (LCVA) in the syndrome of limb apraxia. In the current study, we used a novel virtual reality (VR) imitation paradigm to assess two factors that have remained underexplored in novel movement imitation: the imitation of complex, dynamic full-arm movements, and the effect of spatial perspective.
View Article and Find Full Text PDFPeople with visual impairment often rely on their residual vision when interacting with their spatial environments. The goal of visual accessibility is to design spaces that allow for safe travel for the large and growing population of people who have uncorrectable vision loss, enabling full participation in modern society. This paper defines the functional challenges in perception and spatial cognition with restricted visual information and reviews a body of empirical work on low vision perception of spaces on both local and global navigational scales.
View Article and Find Full Text PDFThe relative contribution of different sources of information for spatial updating - keeping track of one's position in an environment - has been highly debated. Further, children and adults may differ in their reliance on visual versus body-based information for spatial updating. In two experiments, we tested children (age 10-12 years) and young adult participants on a virtual point-to-origin task that varied the types of self-motion information available for translation: full-dynamic (walking), visual-dynamic (controller induced), and no-dynamic (teleporting).
View Article and Find Full Text PDFSuccessful performance on the water-level task, a common measure of spatial perception, requires adopting an environmental, rather than object-centered, spatial frame of reference. Use of this strategy has not been systematically studied in prepubertal children, a developmental period during which individual differences in spatial abilities start to emerge. In this study, children aged 8 to 11 reported their age and gender, completed a paper-and-pencil water-level task, and drew a map of their neighborhood to assess spontaneous choice of spatial frame of reference.
View Article and Find Full Text PDFBoth visual and body-based (vestibular and proprioceptive) information contribute to spatial updating, or the way a navigator keeps track of self-position during movement. Research has tested the relative contributions of these sources of information and found mixed results, with some studies demonstrating the importance of body-based information, especially for translation, and some demonstrating the sufficiency of visual information. Here, we invoke an individual differences approach to test whether some individuals may be more dependent on certain types of information compared to others.
View Article and Find Full Text PDFAtten Percept Psychophys
August 2020
Spatial learning of real-world environments is impaired with severely restricted peripheral field of view (FOV). In prior research, the effects of restricted FOV on spatial learning have been studied using passive learning paradigms - learners walk along pre-defined paths and are told the location of targets to be remembered. Our research has shown that mobility demands and environmental complexity may contribute to impaired spatial learning with restricted FOV through attentional mechanisms.
View Article and Find Full Text PDFBackground: Previous research has found that spatial learning while navigating in novel spaces is impaired with extreme restricted peripheral field of view (FOV) (remaining FOV of 4°, but not of 10°) in an indoor environment with long hallways and mostly orthogonal turns. Here we tested effects of restricted peripheral field on a similar real-world spatial learning task in an art museum, a more challenging environment for navigation because of valuable obstacles and unpredictable paths, in which participants were guided along paths through the museum and learned the locations of pieces of art. At the end of each path, participants pointed to the remembered landmarks.
View Article and Find Full Text PDFIn a series of experiments, we tested the hypothesis that severely degraded viewing conditions during locomotion distort the perception of distance traveled. Some research suggests that there is little-to-no systematic error in perceiving closer distances from a static viewpoint with severely degraded acuity and contrast sensitivity (which we will refer to as blur). However, several related areas of research-extending across domains of perception, attention, and spatial learning-suggest that degraded acuity and contrast sensitivity would affect estimates of distance traveled during locomotion.
View Article and Find Full Text PDFMonitoring one's safety during low vision navigation demands limited attentional resources which may impair spatial learning of the environment. In studies of younger adults, we have shown that these mobility monitoring demands can be alleviated, and spatial learning subsequently improved, via the presence of a physical guide during navigation. The present study extends work with younger adults to an older adult sample with simulated low vision.
View Article and Find Full Text PDFRecent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction.
View Article and Find Full Text PDF