Publications by authors named "Eric de S Gil"

We demonstrated the antinociceptive and anti-inflammatory effects of the ethyl acetate leaf extract of (Jacq.) Sargent (EAECi) in mice. The antioxidant activity of EAECi and its phytoconstituents was also investigated.

View Article and Find Full Text PDF

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry.

View Article and Find Full Text PDF

In the scope of a research program with the goal of developing treatments for inflammatory diseases, the pharmacological evaluation of LQFM291, designed by molecular hybridization from butylated hydroxytoluene and paracetamol, was described. The antioxidant profile of LQFM291 was evaluated by electrochemical measurement. Also, acute or repeated treatments with equimolar doses to paracetamol were used to evaluate the antinociceptive and/or anti-inflammatory activities of LQFM291 in animal models.

View Article and Find Full Text PDF

Aims: Oxidative stress, impaired antioxidant defense and neuroinflammation are often associated with the onset and progression of neuropsychiatric diseases. Conversely, several piperazine compounds presents beneficial neuropharmacological effects as well as antioxidant activity, and some derivatives combine both activities. LQFM212 (2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol) was synthesized to produce effects on CNS and to have an additional antioxidant effect.

View Article and Find Full Text PDF

The binding between anticancer drugs and double-stranded DNA (dsDNA) is a key issue to understand their mechanism of action, and many chemical methods have been explored on this task. Molecular docking techniques successfully predict the affinity of small molecules into the DNA binding sites. In turn, various DNA-targeted drugs are electroactive; in this regard, their electrochemical behavior may change according to the nature and strength of interaction with DNA.

View Article and Find Full Text PDF

The current treatments available for anxiety and depression are only palliative. Full remission has remained elusive, characterizing unmet medical needs. In the scope of an academic drug discovery program, we describe here the design, synthesis, in vitro metabolism prediction and pharmacological characterization of a new piperazine compound, 1-(4-methoxyphenyl)-4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazine (LQFM005), and of its main putative metabolite, 4-(4-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)- 1H-pyrazol-1-yl)phenol (LQFM235).

View Article and Find Full Text PDF

The development biosensing technologies capable of delivering fast and reliable analysis is a growing trend in drug quality control. Considering the emerging use of plant-based polyphenol oxidases (PPO) as biological component of electrochemical biosensors, this work reports the first PPO biosensor and its use in the pharmaceutical analysis of paracetamol in tablet formulations. The biosensor was optimized regarding fruit maturation (immature and mature-ripe), vegetal extract volume to be used in biosensor construction as well as optimal pH of electrochemical cell fluid.

View Article and Find Full Text PDF

This study presents a new polymeric and multielectronic system, the poly-Alizarin Red S (PARS), obtained from the electropolymerization of Alizarin Red S (ARS) dye on an edge-plane pyrolytic graphite electrode (EPPGE) surface. During EPPGE/PARS electrochemical characterization, we identified seven stable and reversible redox peaks in acidic medium (0.10 mol L, pH 1.

View Article and Find Full Text PDF

The use of sunscreen has become an indispensable daily routine since UV radiation is a critical environmental stress factors for human skin. This study focused on the design, synthesis, thermal/chemical stability and efficacy/safety evaluations of a new heterocyclic derivative, namely LQFM184, as a photoprotective agent. The compound showed stability when submitted under oxidative and high-temperature conditions.

View Article and Find Full Text PDF

A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters.

View Article and Find Full Text PDF

LQFM219 is a molecule designed from celecoxibe (COX-2 inhibitor) and darbufelone (inhibitor of COX-2 and 5-LOX) lead compounds through a molecular hybridisation strategy. Therefore, this work aimed to investigate the antinociceptive and anti-inflammatory activities of this new hybrid compound. The acute oral systemic toxicity of LQFM219 was evaluated via the neutral red uptake assay.

View Article and Find Full Text PDF

Carvedilol (CRV) is a non-selective blocker of α and β adrenergic receptors, which has been extensively used for the treatment of hypertension and congestive heart failure. Owing to its poor biopharmaceutical properties, CRV has been incorporated into different types of drug delivery systems and this necessitates the importance of investigating their compatibility and stability. In this sense, we have investigated the applicability of several electroanalytical tools to assess CRV compatibility with lipid excipients.

View Article and Find Full Text PDF

The hospital environment requires special attention to air quality, since it needs to be healthy for the protection of patients and health professionals in order to prevent them against hospital infections. The objective of this study was to isolate, identify and evaluate the susceptibility profile of isolated fungi from two hospitals. For air sampling the impaction (Spin Air, IUL®) and passive sedimentation methods were used.

View Article and Find Full Text PDF

Jenipapo fruit ( L) is a natural source of polyphenol oxidases (PPOs) whose potential in pharmaceutical analysis is noteworthy. Henceforth, this work reports the electrochemical study of a low-cost PPO-based biosensor produced from the crude extract of Jenipapo fruits and accounts a practical approach to employ this biosensor in the determination of methyldopa and paracetamol in pharmaceutical samples. In order to investigate the electrochemical properties of the biosensor, theoretical and practical approaches were employed, and both samples and the biosensor were analyzed through electrochemical impedance spectroscopy (EIS) and voltammetric techniques, namely: differential pulse voltammetry (DPV) and cyclic voltammetry (CV).

View Article and Find Full Text PDF

Bioremediation is a strategy to mitigate environmental impacts of hazardous pollutants from anthropogenic sources. Natural byproducts, including agroindustrial wastes (AW) can be used to induce enzyme biosynthesis, leading up to enhancement of pollutants degradation process. Therefore, this study aimed to evaluate the use of cupuaçu, Theobroma grandiflorum AW as Pycnoporus sanguineus Laccase (Lac) inducer in order to promote 17-α-ethinylestradiol (EE2) bioremediation.

View Article and Find Full Text PDF

In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry.

View Article and Find Full Text PDF

The vegetable kingdom is a wide source of a diverse variety of enzymes with broad biotechnological applications. Among the main classes of plant enzymes, the polyphenol oxidases, which convert phenolic compounds to the related quinones, have been successfully used for biosensor development. The oxidation products from such enzymes can be electrochemically reduced, and the sensing is easily achieved by amperometric transducers.

View Article and Find Full Text PDF

In the scope of a research program aimed at developing new drugs for the treatment of central nervous system diseases, we describe herein the synthesis and pharmacological evaluation of 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one (LQFM180). This compound showed antioxidant activity in two models, electroanalytical assays, and DPPH activity. Moreover, in behavioral tests as the open field test LQFM180 (9.

View Article and Find Full Text PDF

Dual 5-LOX/COX inhibitors are potential new dual drugs to treat inflammatory conditions. This research aimed to design, synthesis and to evaluate the anti-inflammatory and antinociceptive effects of the new compound, which is derived from nimesulide and darbufelone lead compounds. The new dual inhibitor 5-LOX/COX has the possible advantage of gastrointestinal safety.

View Article and Find Full Text PDF

Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water.

View Article and Find Full Text PDF

The new heterocyclic derivative LQFM048 (3) (2,4,6-tris ((E)-ethyl 2-cyano-3-(4-hydroxy-3-methoxyphenyl)acrylate)-1,3,5-triazine) was originally designed through the molecular hybridization strategy from Uvinul® T 150 (1) and (E)-ethyl 2-cyano-3-(4hydroxy-3-methoxyphenyl)acrylate (2) sunscreens, using green chemistry approach. This compound was obtained in global yields (80%) and showed an interesting redox potential. In addition, it is thermally stable up to temperatures around 250°C.

View Article and Find Full Text PDF

A new strategy for the construction of a polyphenol oxidase carbon paste biosensor for paracetamol detection is reported. The eggplant (Solanum melongena) was processed to collect the polyphenol oxidase as an enzyme that was incorporated in the carbon paste sensor construction. The constructed sensor displayed high sensitivity and good selection for paracetamol detection and recognition.

View Article and Find Full Text PDF

This study's aim was to determine the effect of hydroalcoholic extract of M. cauliflora (HEMC) on vascular tension and blood pressure in rats. In our in vitro studies using precontracted isolated aortas from rats, HEMC and acetylcholine (positive control) induced relaxation only in vessels with endothelium.

View Article and Find Full Text PDF

The electrochemical oxidation mechanisms of rosmarinic acid (RA) and verbascoside (VB), both caffeic acid esters with two catechol moieties, were investigated. The redox mechanism is associated with the oxidation of the catechol groups, and was studied over a wide pH range by cyclic, differential pulse and square wave voltammetry, using a glassy carbon electrode. The voltammetric study revealed that both molecules, RA and VB, are reversibly oxidized in two successive pH-dependent steps each with the transfer of two electrons and two protons.

View Article and Find Full Text PDF